Skip to main content
Log in

Local Li–Yau’s estimates on RCD \(^*(K,N)\) metric measure spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we will study the (linear) geometric analysis on metric measure spaces. We will establish a local Li–Yau’s estimate for weak solutions of the heat equation and prove a sharp Yau’s gradient for harmonic functions on metric measure spaces, under the Riemannian curvature-dimension condition RCD \(^*(K,N)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Emery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43, 339–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29, 969–996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric meausure spaces with Riemannian Ricci curvauture bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry–Émery condition, the gradient estimates and the local-to global property of \(RCD^*(K, N)\) metric measure spaces. J. Geom. Anal. 26(1), 24–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bacher, K., Sturm, K.: Localization and tensonrization properties of the curvature-dimension for metric measure spaces. J. Funct. Anal. 259(1), 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakry, D., Bolley, F., Gentil, I.: The Li–Yau inequality and applications under a curvature-dimension condition. http://arxiv.org/abs/1412.5165

  8. Bakry, D., Qian, Z.: Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. Math. 155(1), 98–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bakry, D., Ledoux, M.: A logarithmic Sobolev form of the Li–Yau parabolic inequality. Rev. Mat. Iberoam. 22(2), 683–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.-T.: Li–Yau inequality on graphs. J. Differ. Geom. 99, 359–405 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Ponce, A.C.: Kato’s inequality when \(\Delta u\) is a measure. C. R. Acad. Sci. Paris Ser. I 338, 599–604 (2004)

  12. Bakry, D., Qian, Z.: Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoam. 15(1), 143–179 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davies, E.B.: Heat kernels and spectral theory. In: Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)

  16. Erbar, M., Kuwada, K., Sturm, K.: On the equivalence of the entropic curvature-dimension condition and Bochners inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

  17. Garofalo, N., Mondino, A.: Li–Yau and Harnack type inequalities in metric measure spaces. Nonlinear Anal. 95, 721–734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236, 1113 (2015)

  19. Giglia, N., Mosconi, S.: The abstract Lewy–Stampacchia inequality and applications. J. Math. Pures Appl. 104(2), 258–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gigli, N., Mondino, A.: A PDE approach to nonlinear potential theory. J. Math. Pures Appl. 100(4), 505–534 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hajłasz, P.: Sobolev spaces on metric-measure spaces. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002). In: Contemp. Math., vol. 338, pp. 173–218. Amer. Math. Soc., Providence (2003)

  22. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x–101 (2000)

  23. Hörmander, L.: The analysis of linear partial differential operators I. In: Grundlehren der mathematischen Wissenschaften, 2th edn, vol. 256. Springer, Berlin (1989)

  24. Hua, B., Kell, M., Xia, C.: Harmonic functions on metric measure spaces. http://arxiv.org/abs/1308.3607

  25. Hua, B., Xia, C.: A note on local gradient estimate on Alexandrov spaces. Tohoku Math. J. 66(2), 259–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jensen, R.: The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Rat. Mech. Anal. 101, 1–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, R.: Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal. 266, 1373–1394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang, R.: The Li–Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. 104(9), 29–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, R., Koskela, P., Yang, D.: Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions. J. Math. Pures Appl. 101, 583–598 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang, R., Zhang, H.C.: Hamiltons gradient estimates and a monotonicity formula for heat flows on metric measure spaces. Nonlinear Anal. 131, 32–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang, Y., Zhang, H.C.: Sharp spectral gaps on metric measure spaces. Calc. Var. PDE. 55(1), Art. 14 (2016)

  32. Lee, P.W.Y.: Generalized Li–Yau estimates and Huisken’s monotonicity formula. http://arxiv.org/abs/1211.5559

  33. Li, J., Xu, X.: Differential Harnack inequalities on Riemannian manifolds I: linear heat equation. Adv. Math. 226(5), 4456–4491 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  35. Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 54, 1295–1361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lott, J., Villani, C.: Weak curvature bounds and functional inequalities. J. Funct. Anal. 245(1), 311–333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, P., Wang, J.: Complete manifolds with positive spectrum. II. J. Differ. Geom. 62(1), 143–162 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Marola, N., Masson, M.: On the Harnack inequality for parabolic minimizers in metric measure spaces. Tohoku Math. J. 65, 569–589 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mondino, A., Naber, A.: Structure theory of metric measure spaces with lower Ricci curvature bounds I. http://arxiv.org/abs/1405.2222

  41. Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19, 205–214 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  42. Petrunin, A.: Alexandrov meets Lott–Villani–Sturm. Münster J. Math. 4, 53–64 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Qian, B.: Remarks on differential Harnack inequalities. J. Math. Anal. Appl. 409(1), 556–566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Qian, Z., Zhang, H.-C., Zhu, X.-P.: Sharp spectral gap and Li–Yau’s estimate on Alexandrov spaces. Math. Z. 273(3–4), 1175–1195 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. PDE 44(3–4), 477–494 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Souplet, P., Zhang, Q.S.: Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. London Math. Soc. 38(6), 1045–1053 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sturm, K.: On the geometry of metric measure spaces. I, II. Acta Math. 196(1), 65–131, 133–177 (2006)

  49. Sturm, K.: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Sturm, K.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. 75, 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  51. Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, H.C., Zhu, X.P.: Ricci curvature on Alexandrov spaces and rigidity theorems. Commun. Anal. Geom. 18(3), 503–554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, H.C., Zhu, X.P.: Yau’s gradient estimates on Alexandrov spaces. J. Differ. Geom. 91(3), 445–522 (2012)

    MATH  Google Scholar 

  54. Zhang, H.C., Zhu, X.P.: Lipschitz continuity of harmonic maps between Alexandrov spaces. http://arxiv.org/abs/1311.1331

Download references

Acknowledgments

H. C. Zhang is partially supported by NSFC 11571374. X. P. Zhu is partially supported by NSFC 11521101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Chun Zhang.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HC., Zhu, XP. Local Li–Yau’s estimates on RCD \(^*(K,N)\) metric measure spaces. Calc. Var. 55, 93 (2016). https://doi.org/10.1007/s00526-016-1040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1040-5

Mathematics Subject Classification

Navigation