Skip to main content
Log in

Perelman’s Entropy and Doubling Property on Riemannian Manifolds

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The purpose of this work is to study some monotone functionals of the heat kernel on a complete Riemannian manifold with nonnegative Ricci curvature. In particular, we show that on these manifolds, the gradient estimate of Li and Yau (Acta Math. 156, 153–201, 1986), the gradient estimate of Ni (J. Geom. Anal. 14(1), 87–100, 2004), the monotonicity of the Perelman’s entropy and the volume doubling property are all consequences of an entropy inequality recently discovered by Baudoin and Garofalo, arXiv:0904.1623, 2009. The latter is a linearized version of a logarithmic Sobolev inequality that is due to D. Bakry and M. Ledoux (Rev. Mat. Iberoam. 22, 683–702, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D.: Un critère de non-explosion pour certaines diffusions sur une variété riemannienne complète. C. R. Acad. Sci. Sér. 1, Math. 303(1), 23–26 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Ledoux, M.: A logarithmic Sobolev form of the Li–Yau parabolic inequality. Rev. Mat. Iberoam. 22, 683–702 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Bakry, D., Qian, Z.M.: Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoam. 15(1), 143–179 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Baudoin, F., Garofalo, N.: Generalized Bochner formulas and Ricci lower bounds for sub-Riemannian manifolds of rank two (2009, submitted). arXiv:0904.1623

  5. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. Graduate Studies in Mathematics, vol. 77. American Mathematical Society, Providence (2006). xxxvi+608 pp.

    MATH  Google Scholar 

  6. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  7. Grigor’yan, A.A.: The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182(1), 55–87 (1991) (Russian); translation in Math. USSR-Sb. 72(1), 47–77 (1992)

    MATH  Google Scholar 

  8. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  9. Ni, L.: The entropy formula for linear heat equation. J. Geom. Anal. 14(1), 87–100 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Ni, L.: Addenda to: “The entropy formula for linear heat equation”. J. Geom. Anal. 14(1), 87–100 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. ArXiv:math.DG/0211159

  12. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. (2), 27–38 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Garofalo.

Additional information

Communicated by Jiaping Wang.

First author supported in part by NSF Grant DMS 0907326.

Second author supported in part by NSF Grant DMS-0701001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudoin, F., Garofalo, N. Perelman’s Entropy and Doubling Property on Riemannian Manifolds. J Geom Anal 21, 1119–1131 (2011). https://doi.org/10.1007/s12220-010-9180-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9180-x

Keywords

Mathematics Subject Classification (2000)

Navigation