Skip to main content
Log in

Compost-assisted phytoremediation of As-polluted soil

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The effect of organic matter on the As bioavailability in soils and thus on phytoremediation processes is still controversial. The objective of the present study was to evaluate the combined effect of compost and microorganisms from rhizosphere on the tolerance of barley and wheat plants to soil polluted with different concentrations of As for the application on phytoremediation strategies.

Materials and methods

A greenhouse experiment was performed using soil artificially contaminated with As at two doses. A compost obtained from sewage sludge composted with pruning waste was used (40 t/ha) as amendment. Plants were grown until the end of their growing cycle. Arsenic uptake and plant physiological and biochemical parameters as well as As availability and physicochemical properties in soil samples were analyzed. The impact of compost addition on the structure and diversity of the microbial communities of the rhizosphere was also evaluated using PCR-DGGE.

Results and discussion

Compost application induced a different behavior in both species. Compared to wheat and irrespective of As doses, in compost amended soils, barley plants showed an enhanced As translocation to the aerial part. The different bacterial communities structure found for each species, according to the PCR-DGGE cluster analysis, suggested that specific rhizobacteria of barley may have increased As bioavailability, and would therefore enhance its translocation to aerial parts.

Conclusions

Both species could be used for phytoremediation proposes of As-polluted soils, and specifically, barley would be an interesting option for phytoextraction due to its higher biomass and high As translocation when compost is applied to As-polluted soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedin MDJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66

    Article  CAS  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–888

    Article  CAS  Google Scholar 

  • Ali S, Zeng F, Qiu L, Zhang G (2011) The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biol Plant 55:291–296

    Article  CAS  Google Scholar 

  • Antolín MC, Pascual I, García C, Polo A, Sánchez-Díaz M (2005) Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field Crop Res 94:224–237

    Article  Google Scholar 

  • Arco-Lázaro E, Agudo I, Clemente R, Bernal MP (2016) Arsenic(V) adsorption-desorption in agricultural and mine soils: effects of organic matter addition and phosphate competition. Environ Pollut 216:71–79

    Article  CAS  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations: a review. Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  • Babić M, Radić S, Cvjetko P, Roje V, Pevalek-Kozlina B, Pavlica M (2009) Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquat Bot 91:166–172

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:1–7

    Article  Google Scholar 

  • Barbafieri M, Pedron F, Petruzzelli G, Rosellini I, Franchi E, Bagatin R, Vocciante M (2017) Assisted phytoremediation of a multi-contaminated soil: investigation on arsenic and lead combined mobilization and removal. J Environ Manag 203:316–329

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Article  Google Scholar 

  • Bell T, Ager D, Song JI, Newman JA, Thompson IP, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93:626–636

    Article  CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JFEA (ed) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, NJ, pp 50–76

    Google Scholar 

  • Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ Pollut 155:254–261

    Article  CAS  Google Scholar 

  • Cocolin L, Aggio D, Manzano M, Cantoni C, Comi G (2002) An application of PCR-DGGE analysis to profile the yeast populations in raw milk. Int Dairy J 12:407–411

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  Google Scholar 

  • Deng C, Wen J, Li Z, Luo N, Huang M, Yang R (2018) Passivating effect of dehydrated sludge and sepiolite on arsenic contaminated soil. Ecotox Environ Safe 164:270–276

    Article  CAS  Google Scholar 

  • Du L, Xia X, Lan X, Liu M, Zhao L, Zhang P, Wu Y (2017) Influence of arsenic stress on physiological, biochemical, and morphological characteristics in seedlings of two cultivars of maize (Zea mays L.). Water Air Soil Pollut 228:55

    Article  CAS  Google Scholar 

  • Eze VC, Harvey AP (2018) Extractive recovery and valorization of arsenic from contaminated soil through phytoremediation using Pteris cretica. Chemosphere 208:484–492

    Article  CAS  Google Scholar 

  • Fernández C, Alonso C, Babín MM, Pro J, Carbonell G, Tarazona JV (2004) Ecotoxicological assessment of doxycycline in aged pig manure using multispecies soil systems. Sci Total Environ 323:63–69

    Article  CAS  Google Scholar 

  • Franchi E, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G, Vocciante M (2019) Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Sci Total Environ 655:328–336

    Article  CAS  Google Scholar 

  • Franchi E, Rolli E, Marasco R, Agazzi G, Borin S, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G (2017) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soils Sediments 17:1224–1236

    Article  CAS  Google Scholar 

  • Franco-Otero VG, Soler-Rovira P, Hernández D, López-de-Sá EG, Plaza C (2012) Short-term effects of organic municipal wastes on wheat yield, microbial biomass, microbial activity, and chemical properties of soil. Biol Fertil Soils 48:205–216

    Article  Google Scholar 

  • Gadepalle VP, Ouki SK, Van Herwijnen R, Hutchings T (2007) Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediment Contam 16:233–251

    Article  CAS  Google Scholar 

  • Gangwar S, Singh VP, Garg SK, Prasad SM, Maurya JN (2011) Kinetin supplementation modifies chromium (VI) induced alterations in growth and ammonium assimilation in pea seedlings. Biol Trace Elem Res 144:1327–1343

    Article  CAS  Google Scholar 

  • Gárate A, Ramón AM, Carpena OR (1984) Influencia del boro sobre el manganeso y otros nutrientes en extractos de tejidos vasculares. Anales de Edafología Agrobiología 43:1467–1477

    Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • González A, Gil-Díaz MM, Pinilla P, Lobo MC (2017b) Impact of Cr and Zn on growth, biochemical and physiological parameters, and metal accumulation by wheat and barley plants. Water Air Soil Pollut 228:419

    Article  CAS  Google Scholar 

  • González A, Gil-Díaz MM, Lobo MC (2015) Response of two barley cultivars to increasing concentrations of cadmium or chromium in soil during the growing period. Biol Trace Elem Res 163:235–243

    Article  CAS  Google Scholar 

  • González A, Gil-Díaz MM, Lobo MC (2017a) Metal tolerance in barley and wheat cultivars: physiological screening methods and application in phytoremediation. J Soils Sediments 17:1403–1412

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    Article  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  CAS  Google Scholar 

  • Hopkins J, Watts P, Hosford M (2009) Contaminants in soil: updated collation of toxicological data and intake values for humans inorganic arsenic. Science report: SC050021/TOX 1. Environment Agency. http://webarchive.nationalarchives.gov.uk/20140328084622/http:/www.environment-agency.gov.uk/research/planning/64002.aspx. Accessed 19 March 2017

  • Houben D, Pircar J, Sonnet P (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. J Geochem Explor 123:87–94

    Article  CAS  Google Scholar 

  • Ismail GSM (2012) Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant 34:1303–1311

    Article  CAS  Google Scholar 

  • Kamaludeen SPB, Ramasamy K (2008) Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48:80–88

    Article  CAS  Google Scholar 

  • Kofroňová M, Mašková P, Lipavská H (2018) Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. Planta 248:19–35

    Article  CAS  Google Scholar 

  • Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:80

    Article  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbiome communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439

    Article  CAS  Google Scholar 

  • Li Z, Peng Y, Ma X (2013) Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiol Plant 35:213–222

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Liu Q, Hu C, Tan Q, Sun X, Su J, Liang Y (2008) Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L) under hydroponic conditions. J Environ Sci 20:326–331

    Article  CAS  Google Scholar 

  • Liu X, Zhang S, Shan X, Zhu YG (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301

    Article  CAS  Google Scholar 

  • Lu Y, Li X, He M, Zhao X, Liu Y, Cui Y, Pan Y, Tan H (2010) Seedlings growth and antioxidative enzymes activities in leaves under heavy metals stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass. Acta Physiol Plant 32:583–590

    Article  CAS  Google Scholar 

  • Luo YM, Christie P, Baker AJM (2000) Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 41:161–164

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    Google Scholar 

  • Mao X, Han FX, Shao X, Guo K, McComb J, Arslan Z, Zhang Z (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicol Environ Saf 125:16–24

    Article  CAS  Google Scholar 

  • MAPA (1994) Métodos Oficiales de Análisis, vol. III. Secretaría General Técnica, Ministerio de Agricultura, Pesca y Alimentación, Madrid. Spain

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    Article  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Martínez-Fernández D, Arco-Lazaro E, Bernal P, Clemente R (2014) Comparison of compost and humic fertiliser effects on growth and trace elements accumulation of native plant species in a mine soil phytorestoration experiment. Ecol Eng 73:588–597

    Article  Google Scholar 

  • Mattina MJ, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124:375–378

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  • Mehmood T, Bibi I, Shahid M, Niazi NK, Murtaza B, Wang H, Ok YS, Sarkar B, Javed MT, Murtaza G (2017) Effect of compost addition on arsenic uptake, morphological and physiological attributes of maize plants grown in contrasting soils. J Geochem Explor 178:83–91

    Article  CAS  Google Scholar 

  • Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JLR, Sánchez J, Peláez AI (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:e03411–e03416

    Article  CAS  Google Scholar 

  • Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742

    Article  CAS  Google Scholar 

  • Mukherjee G, Saha C, Naskar N, Mukherjee A, Lahiri S, Majumder AL, Seal A (2018) An endophytic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficacy in Solanum nigrum. Sci Rep 8:6979

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Paez-Espino D, Tamames J, de Lorenzo V, Canovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    Article  CAS  Google Scholar 

  • Pan W, Wu C, Xue S, Hartley W (2014) Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation. J Environ Sci 26:892–899

    Article  CAS  Google Scholar 

  • Panda SK, Chaudhury I, Khan MH (2003) Heavy metal induced lipid peroxidation and affect antioxidants in wheat leaves. Biol Plant 46:289–294

    Article  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM et al (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072–1079

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  Google Scholar 

  • Requejo R, Tena M (2014) Intra-specific variability in the response of maize to arsenic exposure. Environ Sci Pollut Res 21:10574–10582

    Article  CAS  Google Scholar 

  • Ritchie SW, Nguyen HT, Holaday AS (1990) Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci 30:105–111

    Article  Google Scholar 

  • Roca-Pérez L, Martínez C, Marcilla P, Boluda R (2009) Composting rice straw with sewage sludge and compost effects on the soil–plant system. Chemosphere 75:781–787

    Article  CAS  Google Scholar 

  • Rucińska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38:257

    Article  CAS  Google Scholar 

  • Rucińska-Sobkowiak R, Nowaczyk G, Krzesłowska M, Rabęda I, Jurga S (2013) Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot 87:100–109

    Article  CAS  Google Scholar 

  • Santos S, Costa CAE, Duarte AC, Scherer HW, Schneider RJ, Esteves VI, Santos EBH (2010) Influence of different organic amendments on the potential availability of metals from soil: a study on metal fractionation and extraction kinetics by EDTA. Chemosphere 78:389–396

    Article  CAS  Google Scholar 

  • Sastre-Conde I, Cabezas JG, Guerrero A, Vicente MA, Lobo MC (2007) Evaluation of the soil biological activity in a remediation soil assay using organic amendments and vegetal cover. Sci Total Environ 378:205–208

    Article  CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  Google Scholar 

  • Shagol CC, Krishnamoorthy R, Kim K, Sundaram S, Sa T (2014) Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea. Environ Sci Pollut Res 21:9356–9365

    Article  CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2000) Plant screening for chromium phytoremediation. Int J Phytoremediation 2:3–51

    Google Scholar 

  • Shaibur MR, Kitajima N, Huq SMI, Kawai S (2009) Arsenic–iron interaction: effect of additional iron on arsenic-induced chlorosis in barley grown in water culture. Soil Sci Plant Nutr 55:739–746

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana, Illinois

    Google Scholar 

  • Singh RP, Agrawal M (2008) Potential benefits and risks of land application of sewage sludge. Waste Manag 28:347–358

    Article  CAS  Google Scholar 

  • Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21

    Article  CAS  Google Scholar 

  • Sun R, Zhang X-X, Guo X, Wang D, Chu H (2015) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheats straw. Soil Biol Biochem 88:9–18

    Article  CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854

    Article  CAS  Google Scholar 

  • Wu Q, Wang S, Thangavel T, Li Q et al (2011) Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytoremediation 13:788–804

    Article  Google Scholar 

  • Xu JY, Li HB, Liang S, Luo J, Ma LQ (2014) Arsenic enhances plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata. Environ Pollut 194:105–111

    Article  CAS  Google Scholar 

  • Xue ZC, Gao HY, Zhang LT (2013) Effects of cadmium on growth, photosynthetic rate, and chlorophyll content in leaves of soybean seedlings. Biol Plant 57:587–590

    Article  CAS  Google Scholar 

  • Yan X, Liu Q, Wang J, Liao X (2017) A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil. J Environ Sci 57:104–109

    Article  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediation 14:89–99

    Article  Google Scholar 

  • Ye J, Zhang R, Nielsen S, Joseph SD et al (2016) A combination of biochar–mineral complexes and compost improves soil bacterial processes, soil quality, and plant properties. Front Microbiol 7:372

    Google Scholar 

  • Zadoks JC, Chang TT, Kozak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zeng P, Guo ZH, Xiao XY, Peng C, Feng WL, Xin LQ, Xu Z (2018) Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Sci Total Environ 650:594–603

    Article  CAS  Google Scholar 

  • Zhang H, Selim HM (2008) Reaction and transport of arsenic in soils: equilibrium and kinetic modeling. Adv Agron 98:45–115

    Article  CAS  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by the FP16-RESIDUA project (IMIDRA) and EIADES Research Group, www.eiades.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carmen Lobo.

Additional information

Responsible editor: Kitae Baek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, Á., García-Gonzalo, P., Gil-Díaz, M.M. et al. Compost-assisted phytoremediation of As-polluted soil. J Soils Sediments 19, 2971–2983 (2019). https://doi.org/10.1007/s11368-019-02284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02284-9

Keywords

Navigation