Skip to main content
Log in

Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a bioactive gaseous, multifunctional molecule playing a central role and mediating a variety of physiological processes and responses to biotic and abiotic stresses including heavy metals. The present study investigated whether NO applied exogenously as sodium nitroprusside (SNP) has a protective role against arsenic (As) toxicity (applied as sodium arsenate) in Vigna radiata (mung bean) germinating seeds. Treatment with 75 μM SNP significantly improved mung bean seed germination, growth, and decreased the As-accumulation. Furthermore, As-induced oxidative stress measured in terms of malondialdehyde and H2O2 contents was lesser upon supplementation of SNP indicating a reactive oxygen species scavenging activity of NO. In addition, supplementation of SNP markedly decreased the activity of superoxide dismutase and stimulated catalase, α-amylase, protease and slightly changed the H+-ATPase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66

    Article  CAS  Google Scholar 

  • Ashraf MY, Sadiq R, Hussain M, Ashraf M, Ahmad, MSA (2011) Toxic effect of nickel (Ni) on growth and metabolism in germinating seeds of sunflower (Helianthus annuus L.). Biol Trace Element Res (Online publication date 15 Jan)

  • Ahsan N, Lee D, Lee S, Kang KY, Lee JJ, Kim PJ, Yoon H, Kim J, Lee B (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193

    Article  PubMed  CAS  Google Scholar 

  • Ahsan N, Lee D, Kim K, Alam I, Lee S, Lee K, Lee H, Lee B (2010) Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1788

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Ma LQ, Tu C (2004) Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ pollut 128:317–325

    Article  PubMed  CAS  Google Scholar 

  • Carbonell Barrachina A, Burlo CF, Mataix BJ (1995) Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenic on plant growth and yield. J Plant Nutr 18:1237–1250

    Article  Google Scholar 

  • Carbonell-Barrachina AA, Aarabi MA, Delaune RD, Gambrell RP, Patrick WH Jr (1998) The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil 198:33–43

    Article  CAS  Google Scholar 

  • Choudhury B, Mitra S, Biswas AK (2010) Regulation of sugar metabolism in rice (Oryza sativa L.) seedlings under arsenate toxicity and its improvement by phosphate. Physiol Mol Biol Plants 16:59–68

    Article  CAS  Google Scholar 

  • Cliffe AJ, Law BA (1982) A new method for the detection of microbial proteolytic enzyme in milk. J Dairy Res 49:209–219

    Article  CAS  Google Scholar 

  • Cui XM, Zhang YK, Wu XB, Liu CS (2010) The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil Environ 56:274–281

    CAS  Google Scholar 

  • De Pinto MC, Tommasi F, De Gara L (2002) Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright yellow 2 cells. Plant Physiol 130:698–708

    Article  PubMed  Google Scholar 

  • De Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795

    Article  PubMed  Google Scholar 

  • Dua A, Sawhney SK (1991) Effect of chromium on activities of hydrolytic enzymes in germinating pea seeds. Environ Exp Bot 31:133–139

    Article  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Habib N, Ashraf M, Ahmad MSA (2010) Enhancement in seed germinability of rice (Oryza sativa L.) by pre-sowing seed treatment with nitric oxide (NO) under salt stress. Pak J Bot 42:4071–4078

    Google Scholar 

  • He YK, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Hogg N, Kalyanaraman B (1999) Nitric oxide and lipid peroxidation. Biochem Biophys Acta 1411:378–384

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Hu K, Hu LY, Li YH, Zhang FQ, Zhang H (2007) Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul 53:173–183

    Article  CAS  Google Scholar 

  • Jha AB, Dubey RS (2004) Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. J Plant Physiol 161:867–872

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Xu Y, Huang Y (2010) Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. Afr J Biotechnol 11:1619–1627

    Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634

    Article  PubMed  CAS  Google Scholar 

  • Kopyra M, Gwozdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 60:1234–1244

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Latif HH (2010) The influence of nickel sulphate on some physiological aspects of two cultivars of Raphanus sativus L. Arch Biol Sci Belgrade 62:685–693

    Article  Google Scholar 

  • Liu X, Zhang S, Shan X, Zhu Y (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301

    Article  PubMed  CAS  Google Scholar 

  • Loureiro S, Santos C, Pinto G, Costa A, Monteiro M, Nogueira AJA, Soares AMVM (2006) Toxicity assessment of two soils from Jales Mine (Portugal) using plants: growth and biochemical parameters. Arch Environ Contam Toxicol 50:182–190

    Article  PubMed  CAS  Google Scholar 

  • Mahimairaja S, Bolan NS, Adriano DC, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  Google Scholar 

  • Neumann D, Lichtenberger O, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta 194:360–367

    Article  CAS  Google Scholar 

  • Panda SK, Upadhyay RK, Nath S (2010) Arsenic stress in plants. J Agron Crop Sci 196:61–174

    Article  Google Scholar 

  • Parani M, Rudrabhatia S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotech J 2:359–366

    Article  CAS  Google Scholar 

  • Rios-Gonzalez K, Erdei L, Herman S (2002) The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci 162:923–930

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M (2004) Nitric oxide signaling functions in plant–pathogen interactions. Cell Microbiol 6:795–803

    Article  PubMed  CAS  Google Scholar 

  • Shaibur MR, Kawai S (2010) Effect of arsenic on nutritional composition of Japanese mustard spinach: an ill effect of arsenic on nutritional quality of a green leafy vegetable. Nat Sci 8:186–194

    Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  PubMed  CAS  Google Scholar 

  • Singh HP, Batish DR, Kohlo RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyperaccumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Steel RC, Torrie JH (1980) Principles and procedures of statistics, 2nd edn. Mc Graw Hill, New York

    Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2003/4) Physiological response of maize to arsenic contamination. Biol Plant 47:449–452

    Google Scholar 

  • Swain RR, Dekker EE (1966) Seed germination studies. I. Purification and properties of an α-amylase from the cotyledons of germinating peas. Biochim Biophys Acta 122:75–86

    PubMed  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  PubMed  CAS  Google Scholar 

  • Valentovič P, Luxova M, Kolarovic L, Gasparikova O (2006) Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ 52:186–191

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van den Broeck K, Vendecasteele C, Geuns JMC (1998) Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as a bio-indicator for the arsenic contamination. Anal Chim Acta 361:101–111

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat shock proteins and molecular chaperons in the abiotic stress response. Trends Plant Sci 9(5):1360–1385

    Google Scholar 

  • Wollgiehn R, Neumann D (1999) Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvianum: role of heat stress proteins. J Plant Physiol 154:547–553

    Article  CAS  Google Scholar 

  • Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497:13–20

    Article  PubMed  CAS  Google Scholar 

  • Yu CC, Hung KT, Kao CH (2005) Nitric oxide reduces Cu toxicity and Cu-induced NH4 + accumulation in rice leaves. J Plant Physiol 162:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Zenoff AM, Hilal M, Galo M, Moreno H (1994) Changes in roots lipid composition and inhibition of the extrusion of proton during salt stress in two genotypes of soybean resistant or susceptible to stress. Plant Cell Physiol 35:729–735

    CAS  Google Scholar 

  • Zhang H, Shen WB, Zhang W, Xu LL (2005) A rapid response of β-amylase to nitric oxide but not gibberellins in wheat seeds during the early stage of germination. Planta 220:708–716

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada Saber M. Ismail.

Additional information

Communicated by S. Weidner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, G.S.M. Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant 34, 1303–1311 (2012). https://doi.org/10.1007/s11738-012-0927-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0927-9

Keywords

Navigation