Skip to main content
Log in

Myco- and phyco-remediation of polychlorinated biphenyls in the environment: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polychlorinated biphenyls (PCBs) are toxic organic compounds and pose serious threats to environment and public health. PCBs still exist in different environments such as air, water, soil, and sediments even on ban. This review summarizes the phyco- and myco-remediation technologies developed to detoxify the PCB-polluted sites. It was found that algae mostly use bioaccumulation to biodegradation strategies to reclaim the environment. As bio-accumulator, Ulva rigida C. Agardh has been best at 25 ng/g dry wt to remove PCBs. Evidently, Anabaena PD-1 is the only known PCB degrading alga and efficiently degrade Aroclor 1254 and dioxin-like PCBs up to 84.4% and 37.4% to 68.4%, respectively. The review suggested that factors such as choice of algal strains, response of microalgae, biomass, the rate of growth, and cost-effective cultivation conditions significantly influence the remediation of PCBs. Furthermore, the Anabaena sp. linA gene of Pseudomonas paucimobilis Holmes UT26 showed enhanced efficiency. Pleurotus ostreatus (Jacq.) P. Kumm is the most efficient PCB degrading fungus, degrading up to 98.4% and 99.6% of PCB in complex and mineral media, respectively. Combine metabolic activities of bacteria and yeast led to the higher detoxification of PCBs. Fungi-algae consortia would be a promising approach in remediation of PCBs. A critical analysis on potentials and limits of PCB treatment through fungal and algal biosystems have been reviewed, and thus, new insights have emerged for possible bioremediation, bioaccumulation, and biodegradation of PCBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This is a review paper and based on the previous published papers. Table data was generated based on the papers cited and used in the review papers. Figures were redrawn and properly acknowledged.

References

  • Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol 10:241–251

    Article  CAS  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410

    Article  CAS  Google Scholar 

  • An Q, Dong Y-h, Wang H, Ceng F, Zhang J-q (2006) Residues of PCBs in agricultural fields in the Yangtze Delta, China. Environ Sci 27:528–532

    CAS  Google Scholar 

  • Anyasi RO, Atagana H (2011) Biological remediation of polychlorinated biphenyls (PCB) in the environment by microorganisms and plants. Afr J Biotech 10:18916–18938

    Article  CAS  Google Scholar 

  • Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb Ecol 20:197–209

    Article  CAS  Google Scholar 

  • Baghour M (2017) Effect of seaweeds in phytoremediation. Biotechnological applications of seaweeds. Nova Science Publishers, New York, pp 47–83

  • Baghour M (2019) Algal degradation of organic pollutants. In: Kharissova OV, Kharisov BI (eds) Martínez LMT. Handbook of Ecomaterials. Springer International Publishing, Cham, Switzerland, pp 565–586

    Google Scholar 

  • Balcázar-López E, Méndez-Lorenzo LH, Batista-García RA, Esquivel-Naranjo U, Ayala M, Kumar VV, Savary O, Cabana H, Herrera-Estrella A, Folch-Mallol JL (2016) Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS One 11:e0147997. https://doi.org/10.1371/journal.pone.0147997

    Article  CAS  Google Scholar 

  • Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Environ Microbiol 64:2020–2025

    Article  CAS  Google Scholar 

  • Berglund O, Larsson P, Ewald G, Okla L (2001) The effect of lake trophy on lipid content and PCB concentrations in planktonic food webs. Ecology 82:1078–1088

    Article  Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Bourlieu C, Astruc T, Barbe S, Berrin J-G, Bonnin E, Boutrou R, Hugouvieux V, Le Feunteun S, Paës G (2020) Enzymes to unravel bioproducts architecture. Biotechnol Adv 107546. https://doi.org/10.1016/j.biotechadv.2020.107546

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  CAS  Google Scholar 

  • Cajthaml T (2015) Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environ Microbiol 17:4822–4834

    Article  CAS  Google Scholar 

  • Campanella BF, Bock C, Schröder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs. Environ Sci Pollut Res 9:73–85

    Article  CAS  Google Scholar 

  • Chan SM, Luan T, Wong MH, Tam NF (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25:1772–1779

    Article  CAS  Google Scholar 

  • Chen F, Hao S, Qu J, Ma J, Zhang S (2015) Enhanced biodegradation of polychlorinated biphenyls by defined bacteria-yeast consortium. Ann Microbiol 65:1847–1854

    Article  CAS  Google Scholar 

  • Chen J, Ding L, Liu R, Xu S, Li L, Gao L, Wei L, Leng S, Li J, Li J (2020) Hydrothermal carbonization of microalgae-fungal pellets: removal of nutrients from the aqueous phase fungi and microalgae cultivation. ACS Sustain Chem Eng 8:16823–16832

    Article  CAS  Google Scholar 

  • Cheney D, Rajic L, Sly E, Meric D, Sheahan T (2014) Uptake of PCBs contained in marine sediments by the green macroalga Ulva rigida. Mar Pollut Bull 88:207–214

    Article  CAS  Google Scholar 

  • Chibuike G (2013) Use of mycorrhiza in soil remediation: a review. Sci Res Essays 8:679–1687

    Article  Google Scholar 

  • Chun SC, Muthu M, Hasan N, Tasneem S, Gopal J (2019) Mycoremediation of PCBs by Pleurotus ostreatus: possibilities and prospects. Appl Sci 9(19):4185

    Article  CAS  Google Scholar 

  • Cloete TE, Celliers L (1999) Removal of Aroclor 1254 by the white rot fungus Coriolus versicolor in the presence of different concentrations of Mn (IV) oxide. Int Biodeterior Biodegradation 44:243–253

    Article  CAS  Google Scholar 

  • Covino S, Stella T, Cajthaml T (2016) Mycoremediation of organic pollutants: principles, opportunities, and pitfalls. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42852-9

  • Crinnion WJ (2011) Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences. Altern Med Rev 16

  • Čvančarová M, Křesinová Z, Filipová A, Covino S, Cajthaml T (2012) Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 88:1317–1323

    Article  Google Scholar 

  • Danielovič I, Hecl J, Danilovič M (2014) Soil contamination by PCBs on a regional scale: the case of Strážske, Slovakia. Pol J Environ Stud 23

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manage 51:2738–2749

    Article  CAS  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170

    Article  Google Scholar 

  • Desforges J-P, Hall A, McConnell B, Rosing-Asvid A, Barber JL, Brownlow A, De Guise S, Eulaers I, Jepson PD, Letcher RJ (2018) Predicting global killer whale population collapse from PCB pollution. Science 361:1373–1376

    Article  CAS  Google Scholar 

  • Doddapaneni H, Yadav JS (2004) Differential regulation and xenobiotic induction of tandem P450 monooxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 65:559–565

    Article  CAS  Google Scholar 

  • Donnelly P, Fletcher J (1995) PCB metabolism by ectomycorrhizal fungi. Bull Environ Contam Toxicol 54:507–513

    Article  CAS  Google Scholar 

  • Du Z-Y, Zienkiewicz K, Pol NV, Ostrom NE, Benning C, Bonito GM (2019) Algal-fungal symbiosis leads to photosynthetic mycelium. Elife 8:e47815

    Article  CAS  Google Scholar 

  • Dubey SK, Dubey J, Mehra S, Tiwari P, Bishwas A (2011) Potential use of cyanobacterial species in bioremediation of industrial effluents. Afr J Biotech 10:1125–1132

    Google Scholar 

  • Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microb Technol 7:194–196

    Article  CAS  Google Scholar 

  • Federici E, Giubilei M, Santi G, Zanaroli G, Negroni A, Fava F, Petruccioli M, D’Annibale A (2012) Bioaugmentation of a historically contaminated soil by polychlorinated biphenyls with Lentinus tigrinus. Microb Cell Fact 11:1–14

    Article  Google Scholar 

  • Folland WR, Newsted JL, Fitzgerald SD, Fuchsman PC, Bradley PW, Kern J, Kannan K, Remington RE, Zwiernik MJ (2016) Growth and reproductive effects from dietary exposure to Aroclor 1268 in mink (Neovison vison), a surrogate model for marine mammals. Environ Toxicol Chem 35:604–618

    Article  CAS  Google Scholar 

  • Furukawa K (2000) Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J Gen Appl Microbiol 46:283–296

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  CAS  Google Scholar 

  • Gąsecka M, Drzewiecka K, Siwulski M, Sobieralski K (2015) Evaluation of polychlorinated biphenyl degradation through refuse from Pleurotus ostreatus, Lentinula edodes and Agaricus bisporus production. Folia Horticulturae 27:135–144

    Article  Google Scholar 

  • Gayosso-Canales M, Rodríguez-Vázquez R, Esparza-García F, Bermúdez-Cruz R (2012) PCBs stimulate laccase production and activity in Pleurotus ostreatus thus promoting their removal. Folia Microbiol 57:149–158

    Article  CAS  Google Scholar 

  • Germain J, Raveton M, Binet M, Mouhamadou B (2021) Screening and metabolic potential of fungal strains isolated from contaminated soil and sediment in the polychlorinated biphenyl degradation. Ecotoxicol Environ Saf 208:111703

    Article  CAS  Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Hall AJ, Hugunin K, Deaville R, Law RJ, Allchin CR, Jepson PD (2006) The risk of infection from polychlorinated biphenyl exposure in the harbor porpoise (Phocoena phocoena): a case–control approach. Environ Health Perspect 114:704–711

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  Google Scholar 

  • Hashmi MZ, Chen K, Khalid F, Yu C, Tang X, Li A, Shen C (2021) Forty years studies on polychlorinated biphenyls pollution, food safety, health risk, and human health in an e waste recycling area from Taizhou city, China: a review. Environ Sci Pollut Res 29:4991–5005

    Article  Google Scholar 

  • Hashmi MZ, Kaleem M, Farooq U, Su X, Chakraborty P, Rehman SU (2022) Chemical remediation and advanced oxidation process of polychlorinated biphenyls in contaminated soils: a review. Environ Sci Pollut Res 29:22930–22945

    Article  CAS  Google Scholar 

  • Heitzer M, Eckert A, Fuhrmann M, Griesbeck C (2007) Influence of codon bias on the expression of foreign genes in microalgae. In: León R, Galván A, Fernández E (eds) Transgenic microalgae as green cell factories. Springer, New York, NY. Adv Exp Med Biol 16:46–53. https://doi.org/10.1007/978-0-387-75532-8_5

  • Helmfrid I, Berglund M, Löfman O, Wingren G (2012) Health effects and exposure to polychlorinated biphenyls (PCBs) and metals in a contaminated community. Environ Int 44:53–58

    Article  CAS  Google Scholar 

  • Hihara Y, Ikeuchi M (1997) Mutation in a novel gene required for photomixotrophic growth leads to enhanced photoautotrophic growth of Synechocystis sp. PCC 6803. Photosynth Res 53:243–252

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Jabusch T (2002) Mechanistic studies of the bioaccumulation of polychlorinated biphenyls in phytoplankton. PhD thesis. Water Resources Science Program, University of Minnesota, St. Paul, MN

  • Jabusch TW, Swackhamer DL (2004) Subcellular accumulation of polychlorinated biphenyls in the green alga Chlamydomonas reinhardtii. Environ Toxicol Chem 23:2823–2830

    Article  Google Scholar 

  • Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87:278–284

    Article  CAS  Google Scholar 

  • Joner E, Leyval C (2003) Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. Agronomie 23:495–502

    Article  CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegrad - Life Sci 1:289–320. https://doi.org/10.5772/56194

    Article  CAS  Google Scholar 

  • Kamei I, Kogura R, Kondo R (2006a) Metabolism of 4, 4′-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biotechnol 72:566–575

    Article  CAS  Google Scholar 

  • Kamei I, Sonoki S, Haraguchi K, Kondo R (2006b) Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940

    Article  CAS  Google Scholar 

  • Keum YS, Li QX (2004) Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls. Chemosphere 56:23–30

    Article  CAS  Google Scholar 

  • Khalid F, Hashmi MZ, Jamil N, Qadir A, Ali MI (2021) Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. Environ Sci Pollut Res 28:10474–10487

  • Koh S-C, Park Y-I, Koo Y-M, So J-S (2000) Plant terpenes and lignin as natural cosubstrates in biodegradation of polyclorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). Biotechnol Bioprocess Eng 5:164–168

    Article  CAS  Google Scholar 

  • Koksharova O, Wolk C (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58:123–137

    Article  CAS  Google Scholar 

  • Köller G, Möder M, Czihal K (2000) Peroxidative degradation of selected PCB: a mechanistic study. Chemosphere 41:1827–1834

    Article  Google Scholar 

  • Kramer S, Hikel SM, Adams K, Hinds D, Moon K (2012) Current status of the epidemiologic evidence linking polychlorinated biphenyls and non-hodgkin lymphoma, and the role of immune dysregulation. Environ Health Perspect 120:1067–1075

    Article  CAS  Google Scholar 

  • Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Šašek V (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43:207–215

    Article  CAS  Google Scholar 

  • Kumar B, Verma VK, Singh SK, Kumar S, Sharma CS, Akolkar AB (2014) Polychlorinated biphenyls in residential soils and their health risk and hazard in an industrial city in India. J Public Health Res. https://doi.org/10.4081/jphr.2014.252

  • Kuritz T, Bocanera LV, Rivera NS (1997) Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon. J Bacteriol 179:3368–3370

    Article  CAS  Google Scholar 

  • Lamar RT (1992) The role of fungal lignin-degrading enzymes in xenobiotic degradation. Curr Opin Biotechnol 3:261–266

    Article  CAS  Google Scholar 

  • Lara R, Wiencke C, Ernst W (1989) Association between exudates of brown algae and polychlorinated biphenyls. J Appl Phycol 1:267–270

    Article  Google Scholar 

  • Lauze JF, Hable WE (2017) Impaired growth and reproductive capacity in marine rockweeds following prolonged environmental contaminant exposure. Bot Mar 60:137–148

    Article  CAS  Google Scholar 

  • Leng L, Li W, Chen J, Leng S, Chen J, Wei L, Peng H, Li J, Zhou W, Huang H (2021) Coculture of fungi-microalgae consortium for wastewater treatment: a review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.125008

  • León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

    Article  Google Scholar 

  • Lim PE, Mak K, Mohamed N, Noor AM (2003) Removal and speciation of heavy metals along the treatment path of wastewater in subsurface-flow constructed wetlands. Water Sci Technol 48:307–313

    Article  CAS  Google Scholar 

  • Liu Y, Chen G (2006) Research advances in phytoremediation of polychiorinated biphenyls (PCBS). Ying yong sheng tai xue bao J Appl Ecol 17:325–330

    CAS  Google Scholar 

  • Lynn SG, Price DJ, Birge WJ, Kilham SS (2007) Effect of nutrient availability on the uptake of PCB congener 2, 2′, 6, 6′-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquat Toxicol 83:24–32

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Marco-Urrea E, Reddy CA (2012) Degradation of chloro-organic pollutants by White Rot Fungi. In: Singh S (ed) Microbial Degradation of Xenobiotics. Springer, Berlin, Heidelberg. Indian J Environ Health. https://doi.org/10.1007/978-3-642

  • Maroli L, Pavoni B, Sfriso A, Raccanelli S (1993) Concentrations of polychlorinated biphenyls and pesticides in different species of macroalgae from the Venice Lagoon. Mar Pollut Bull 26:553–558

    Article  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  Google Scholar 

  • Martinez M, Bernal P, Almela C, Velez D, Garcia-Agustin P, Serrano R (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485. https://doi.org/10.1016/j.chemosphere.2005.10.044

    Article  CAS  Google Scholar 

  • McCoy CW, Samson RA, Boucias DG (2019) Entomogenous fungi, CRC handbook of natural pesticides. CRC Press, pp. 151–236

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  Google Scholar 

  • Meijer SN, Ockenden W, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 37:667–672

    Article  CAS  Google Scholar 

  • Moktali V, Park J, Fedorova-Abrams ND, Park B, Choi J, Lee Y-H, Kang S (2012) Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13:1–13

    Article  Google Scholar 

  • Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117:268–274

    Article  CAS  Google Scholar 

  • Murphy S, Barber JL, Learmonth JA, Read FL, Deaville R, Perkins MW, Brownlow A, Davison N, Penrose R, Pierce GJ (2015) Reproductive failure in UK harbour porpoises Phocoena phocoena: legacy of pollutant exposure? PLoS One 10:e0131085

    Article  Google Scholar 

  • Muzikář M, Křesinová Z, Svobodová K, Filipová A, Čvančarová M, Cajthamlová K, Cajthaml T (2011) Biodegradation of chlorobenzoic acids by ligninolytic fungi. J Hazard Mater 196:386–394

    Article  Google Scholar 

  • Nam JM, Fujita Y, Arai T, Kondo A, Morikawa Y, Okada H, Ueda M, Tanaka A (2002) Construction of engineered yeast with the ability of binding to cellulose. J Mol Catal B Enzym 17:197–202

    Article  CAS  Google Scholar 

  • Net S, Henry F, Rabodonirina S, Diop M, Merhaby D, Mahfouz C, Ouddane B (2015) Accumulation of PAHs, Me-PAHs, PCBs and total mercury in sediments and marine species in coastal areas of Dakar, Senegal: contamination level and impact. Int J Environ Res 9:419–432

    CAS  Google Scholar 

  • Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W (2003) Removal of PCBs from wastewater using fly ash. Chemosphere 53:655–665

    Article  CAS  Google Scholar 

  • Papazi A, Andronis E, Ioannidis NE, Chaniotakis N, Kotzabasis K (2012) High yields of hydrogen production induced by meta-substituted dichlorophenols biodegradation from the green alga Scenedesmus obliquus. PLoS One 7:e49037

    Article  CAS  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    Article  CAS  Google Scholar 

  • Pavoni B, Calvo C, Sfriso A, Orio A (1990) Time trend of PCB concentrations in surface sediments from a hypertrophic, macroalgae populated area of the lagoon of Venice. Sci Total Environ 91:13–21

    Article  CAS  Google Scholar 

  • Pavoni B, Caliceti M, Sperni L, Sfriso A (2003) Organic micropollutants (PAHs, PCBs, pesticides) in seaweeds of the lagoon of Venice. Oceanol Acta 26:585–596

    Article  CAS  Google Scholar 

  • Perigon S, Massier M, Germain J, Binet M-N, Legay N, Mouhamadou B (2019) Metabolic adaptation of fungal strains in response to contamination by polychlorinated biphenyls. Environ Sci Pollut Res 26:14943–14950

    Article  CAS  Google Scholar 

  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T, Furihata K, Nojiri H, Yamane H, Omori T (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191:115–121

    Article  CAS  Google Scholar 

  • Plačková M, Svobodová K, Cajthaml T (2012) Laccase activity profiling and gene expression in PCB-degrading cultures of Trametes versicolor. Int Biodeterior Biodegradation 71:22–28

    Article  Google Scholar 

  • Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeterior Biodegradation 54:45–52

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33. https://doi.org/10.1007/s002530100745

    Article  CAS  Google Scholar 

  • Qin H, Brookes PC, Xu J (2016) Arbuscular mycorrhizal fungal hyphae alter soil bacterial community and enhance polychlorinated biphenyls dissipation. Front Microbiol 7:939

    Article  Google Scholar 

  • Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. In: León R, Galván A, Fernández E (eds) Transgenic microalgae as green cell factories. Springer, New York, NY. Adv Exp Med Biol. https://doi.org/10.1007/978-0-387

  • Rao M, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10:333–353

    Article  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Reddy AVB, Moniruzzaman M, Aminabhavi TM (2019) Polychlorinated biphenyls (PCBs) in the environment: recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chem Eng J 358:1186–1207

    Article  CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  Google Scholar 

  • Ruiz-Aguilar GM, Fernández-Sánchez JM, Rodríguez-Vázquez R, Poggi-Varaldo H (2002) Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv Environ Res 6:559–568

    Article  Google Scholar 

  • Sadañoski MA, Benítez SF, Fonseca MI, Velázquez JE, Zapata PD, Levin LN, Villalba LL (2019) Mycoremediation of high concentrations of polychlorinated biphenyls with Pleurotus sajor-caju LBM 105 as an effective and cheap treatment. J Environ Chem Eng 7:103453

    Article  Google Scholar 

  • Sage L, Périgon S, Faure M, Gaignaire C, Abdelghafour M, Mehu J, Geremia RA, Mouhamadou B (2014) Autochthonous ascomycetes in depollution of polychlorinated biphenyls contaminated soil and sediment. Chemosphere 110:62–69

    Article  CAS  Google Scholar 

  • Schoeny R, Cody T, Warshawsky D, Radike M (1988) Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species. Mutation Research/fundamental and Molecular Mechanisms of Mutagenesis 197:289–302

    Article  CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300

    Article  CAS  Google Scholar 

  • Senthivelan T, Kanagaraj J, Panda R (2016) Recent trends in fungal laccase for various industrial applications: an eco-friendly approach-a review. Biotechnol Bioprocess Eng 21:19–38

    Article  CAS  Google Scholar 

  • Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA (2018) Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environ Sci Pollut Res 25:16355–16375

    Article  CAS  Google Scholar 

  • Sieburth JM, Jensen A (1969) Studies on algal substances in the sea. II. The formation of Gelbstoff (humic material) by exudates of Phaeophyta. J Exp Mar Biol Ecol 3:275–289

    Article  CAS  Google Scholar 

  • Singer AC, Smith D, Jury WA, Hathuc K, Crowley DE (2003) Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ Toxicol Chem: Int J 22:1998–2004

    Article  CAS  Google Scholar 

  • Siracusa G, Becarelli S, Lorenzi R, Gentini A, Di Gregorio S (2017) PCB in the environment: bio-based processes for soil decontamination and management of waste from the industrial production of Pleurotus ostreatus. New Biotechnol 39:232–239

    Article  CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  Google Scholar 

  • Stella T, Covino S, Křesinová Z, D’Annibale A, Petruccioli M, Čvančarová M, Cajthaml T (2013) Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: in vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation. J Hazard Mater 260:975–983

    Article  CAS  Google Scholar 

  • Stella T, Covino S, Burianová E, Filipová A, Křesinová Z, Voříšková J, Větrovský T, Baldrian P, Cajthaml T (2015) Chemical and microbiological characterization of an aged PCB-contaminated soil. Sci Total Environ 533:177–186

    Article  CAS  Google Scholar 

  • Stella T, Covino S, Čvančarová M, Filipová A, Petruccioli M, D’Annibale A, Cajthaml T (2017) Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J Hazard Mater 324:701–710

    Article  CAS  Google Scholar 

  • Stevens DR, Purton S (1997) Genetic engineering of eukarygtic algae: progress and prospects. J Phycol 33:713–722

    Article  CAS  Google Scholar 

  • Subramanian V, Yadav JS (2008) Regulation and heterologous expression of P450 enzyme system components of the white rot fungus Phanerochaete chrysosporium. Enzyme Microb Technol 43:205–213

    Article  CAS  Google Scholar 

  • Takahashi H, Uchimiya H, Hihara Y (2008) Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. J Exp Bot 59:3009–3018

    Article  CAS  Google Scholar 

  • Takamiya M, Magan N, Warner PJ (2008) Impact assessment of bisphenol A on lignin-modifying enzymes by basidiomycete Trametes versicolor. J Hazard Mater 154:33–37

    Article  CAS  Google Scholar 

  • Teng Y, Luo Y, Sun X, Tu C, Xu L, Liu W, Li Z, Christie P (2010) Influence of arbuscular mycorrhiza and rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. Int J Phytorem 12:516–533

    Article  CAS  Google Scholar 

  • Terrón MC, González T, Carbajo JM, Yagüe S, Arana-Cuenca A, Téllez A, Dobson AD, González AE (2004) Structural close-related aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp. I-62. Fungal Genet Biol 41:954–962

    Article  Google Scholar 

  • Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RN, Regal PJ (1989) The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70:298–315

    Article  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  Google Scholar 

  • Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641

    Article  CAS  Google Scholar 

  • Wang S, Hao C, Gao Z, Chen J, Qiu J (2014) Theoretical investigation on photodechlorination mechanism of polychlorinated biphenyls. Chemosphere 95:200–205

    Article  CAS  Google Scholar 

  • Wang Y, Ho S-H, Cheng C-L, Guo W-Q, Nagarajan D, Ren N-Q, Lee D-J, Chang J-S (2016) Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Biores Technol 222:485–497

    Article  CAS  Google Scholar 

  • Williams RS, Curnick DJ, Barber JL, Brownlow A, Davison NJ, Deaville R, Perkins M, Jobling S, Jepson PD (2020) Juvenile harbor porpoises in the UK are exposed to a more neurotoxic mixture of polychlorinated biphenyls than adults. Sci Total Environ 708:134835

    Article  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880. https://doi.org/10.1038/nature724

    Article  CAS  Google Scholar 

  • Yadav J, Wallace R, Reddy C (1995) Mineralization of mono-and dichlorobenzenes and simultaneous degradation of chloro-and methyl-substituted benzenes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:677–680

    Article  CAS  Google Scholar 

  • Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169

    Article  CAS  Google Scholar 

  • Yan X, Yang Y, Li Y, Sheng G, Yan G (2002) Accumulation and biodegradation of anthracene by Chlorella protothecoides under different trophic conditions. Ying yong sheng tai xue bao= The journal of applied ecology 13:145–150

    CAS  Google Scholar 

  • Yang L, Li H, Wang Q (2019) A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Biores Technol 275:35–43

    Article  CAS  Google Scholar 

  • Yeo S, Kim MK, Choi HT (2008) Increased expression of laccase by the addition of phthalates in Phlebia tremellosa. FEMS Microbiol Lett 278:72–77

    Article  CAS  Google Scholar 

  • Yin Y, Guo J, Zheng L, Tian L, Wang X (2011) Capability of polychlorinated biophenyl (PCBs) degrading fungi segregated from sediments. World J Microbiol Biotechnol 27:2567–2574

    Article  CAS  Google Scholar 

  • Zhang H, Jiang X, Lu L, Xiao W (2015) Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1. PLoS One 10:e0131450

    Article  Google Scholar 

  • Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, Ruan R (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167:214–228

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Higher Education Commission of Pakistan NRPU projects 7958 and 7964. Thanks are due to Pakistan Science Foundation project PSF/Res/CP/C-CUI/Envr (151) for providing the funding. Furthermore, thanks are due to Pakistan Academy of Sciences project 3–9/PAS/98 for funding.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Kaleem wrote the paper, Abdul Samad Mumtaz supervised and revised the work, and Muhammad Zaffar Hashmi developed the idea and supervised, wrote, and revised the work. Lubna Anjum Minhas draw the figure and structural formulas of PCBs and wrote some part of the paper. Aamer Saeed, Farooq Inam, Rooma Waqar, and Amber Jabeen revised the paper.

Corresponding author

Correspondence to Muhammad Zaffar Hashmi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleem, M., Mumtaz, A.S., Hashmi, M.Z. et al. Myco- and phyco-remediation of polychlorinated biphenyls in the environment: a review. Environ Sci Pollut Res 30, 13994–14007 (2023). https://doi.org/10.1007/s11356-022-24902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24902-9

Keywords

Navigation