Skip to main content
Log in

Chemical remediation and advanced oxidation process of polychlorinated biphenyls in contaminated soils: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2022

This article has been updated

Abstract

Polychlorinated biphenyls (PCBs) are synthetic organic compounds ubiquitously distributed worldwide due to their persistence, long-range atmospheric transport, and bioaccumulation. Owing to teratogenic properties, PCBs are a global environmental problem. Different physical, biological, and chemical techniques are utilized for the remediation of PCBs. This review paper discusses the recent development in photocatalytic and chemical techniques for the remediation of PCBs in contaminated soils. In particular, the photocatalytic degradation of PCBs combined with soil washing, Fe-based reductive dichlorination, and advanced oxidation process (Fenton advance oxidation and persulfate oxidation) is discussed and reviewed in detail. The review suggested that advanced oxidation is an efficient remediation technique with 77–99% of removal efficiency of PCBs. Persulfate oxidation is the most suitable technique which could work at normal environmental conditions (such as pH, temperature, soil organic matter (SOM), etc.). Different environmental factors such as pH, temperature, and SOM affect the Fe-based reductive dechlorination and Fenton advance oxidation techniques. The surfactants and organic solvents used in soil washing combined with photocatalytic degradation affect the degradation capability of these techniques. This review will contribute to PCBs degradation by the detailed discussion of development in chemical technique future perspective and research needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

This is a review paper based on the previous published papers. Table data was generated based on the papers cited and used in the review papers. Figures were redrawn and properly acknowledged.

Change history

References

  • Agarwal S, Al-Abed SR, Dionysiou DD (2007) Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs. Environ Sci Technol 41:3722–3727

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  • Arnold SM, Hickey WJ, Harris RF (1995) Degradation of atrazine by Fenton’s reagent: condition optimization and product quantification. Environ Sci Technol 29:2083–2089

    Article  CAS  Google Scholar 

  • Arnold WA, Roberts AL (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe (0) particles. Environ Sci Technol 34:1794–1805

    Article  CAS  Google Scholar 

  • Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater 178:10–28

    Article  CAS  Google Scholar 

  • Benatti CT, da Costa ACS, Tavares CRG (2009) Characterization of solids originating from the Fenton’s process. J Hazard Mater 163:1246–1253

    Article  CAS  Google Scholar 

  • Bielski BH, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O− 2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    Article  CAS  Google Scholar 

  • Braslavsky SE, Braun AM, Cassano AE, Emeline AV, Litter MI, Palmisano L, Parmon VN, Serpone N (2011) Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl Chem 83:931–1014

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  • Cao M, Hou Y, Zhang E, Tu S, Xiong S (2019) Ascorbic acid induced activation of persulfate for pentachlorophenol degradation. Chemosphere 229:200–205

  • Chakraborty P, Selvaraj S, Nakamura M, Prithiviraj B, Cincinelli A, Bang JJ (2018) PCBs and PCDD/Fs in soil from informal e-waste recycling sites and open dumpsites in India: levels, congener profiles and health risk assessment. Sci Total Environ 621:930–938

    Article  CAS  Google Scholar 

  • Checa-Fernandez A, Santos A, Romero A, Dominguez CM (2021) Application of chelating agents to enhance fenton process in soil remediation: a review. Catalysts 11:722

    Article  CAS  Google Scholar 

  • Chen L, Tang X, Shen C, Chen C, Chen Y (2012) Photosensitized degradation of 2, 4′, 5-trichlorobiphenyl (PCB 31) by dissolved organic matter. J Hazard Mater 201:1–6

    Article  Google Scholar 

  • Chen X, Yao X, Yu C, Su X, Shen C, Chen C, Huang R, Xu X (2014) Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Environ Sci Pollut Res 21:5201–5210

    Article  CAS  Google Scholar 

  • Chiarenzelli J, Scrudato R, Wunderlich M, Rafferty D, Jensen K, Oenga G, Roberts R, Pagano J (1995) Photodecomposition of PCBs absorbed on sediment and industrial waste: implications for photocatalytic treatment of contaminated solids. Chemosphere 31:3259–3272

    Article  CAS  Google Scholar 

  • Chu W, Jafvert CT (1994) Photodechlorination of polychlorobenzene congeners in surfactant micelle solutions. Environ Sci Technol 28:2415–2422

    Article  CAS  Google Scholar 

  • Chu W, Jafvert CT, Diehl CA, Marley K, Larson RA (1998) Phototransformations of polychlorobiphenyls in Brij 58 micellar solutions. Environ Sci Technol 32:1989–1993

    Article  CAS  Google Scholar 

  • Chu W, Chan K, Kwan C, Jafvert C (2005) Acceleration and quenching of the photolysis of PCB in the presence of surfactant and humic materials. Environ Sci Technol 39:9211–9216

    Article  CAS  Google Scholar 

  • da Silva MRA, Rodrigues EdO, Espanhol-Soares M, Silva FS, Kondo MM, Gimenes R (2019) Application of Fenton process to remove organic matter and PCBs from waste (fuller’s earth) contaminated with insulating oil. Environ Technol 40:1298–1305

    Article  Google Scholar 

  • Dai Q, Xu X, Eskenazi B, Asante KA, Chen A, Fobil J, Bergman Å, Brennan L, Sly PD, Nnorom IC (2020) Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: an under-recognized threat to local health. Environ Int 139:105731

    Article  CAS  Google Scholar 

  • Deng Y, Englehardt JD (2006) Treatment of landfill leachate by the Fenton process. Water Res 40:3683–3694

    Article  CAS  Google Scholar 

  • Doong R-A, Wu S-C (1992) Reductive dechlorination of chlorinated hydrocarbons in aqueous solutions containing ferrous and sulfide ions. Chemosphere 24:1063–1075

    Article  CAS  Google Scholar 

  • Ehsan S, Prasher SO, Marshall WD (2007) Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68:150–158

    Article  CAS  Google Scholar 

  • Elliott DW, Zhang W-X (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926

    Article  CAS  Google Scholar 

  • Entezari M, Godini H, Sheikhmohammadi A, Esrafili A (2019) Enhanced degradation of polychlorinated biphenyls with simultaneous usage of reductive and oxidative agents over UV/sulfite/TiO2 process as a new approach of advanced oxidation/reduction processes. J Water Process Eng 32:100983

    Article  Google Scholar 

  • Fabbri D, Prevot AB, Zelano V, Ginepro M, Pramauro E (2008) Removal and degradation of aromatic compounds from a highly polluted site by coupling soil washing with photocatalysis. Chemosphere 71:59–65

    Article  CAS  Google Scholar 

  • Fan G, Wang Y, Fang G, Zhu X, Zhou D (2016) Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments. Environ Sci Process Impacts 18:1140–1156

    Article  CAS  Google Scholar 

  • Fang G-D, Dionysiou DD, Wang Y, Al-Abed SR, Zhou D-M (2012) Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. J Hazard Mater 227:394–401

    Article  Google Scholar 

  • Fang G-D, Dionysiou DD, Zhou D-M, Wang Y, Zhu X-D, Fan J-X, Cang L, Wang Y-J (2013a) Transformation of polychlorinated biphenyls by persulfate at ambient temperature. Chemosphere 90:1573–1580

    Article  CAS  Google Scholar 

  • Fang G-D, Zhou D-M, Dionysiou DD (2013b) Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl. J Hazard Mater 250:68–75

    Article  Google Scholar 

  • Fang G, Gao J, Dionysiou DD, Liu C, Zhou D (2013c) Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environ Sci Technol 47:4605–4611

    Article  CAS  Google Scholar 

  • Fang G, Wu W, Liu C, Dionysiou DD, Deng Y, Zhou D (2017) Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study. Appl Catal B 202:1–11

    Article  CAS  Google Scholar 

  • Fang Y, Al-Abed SR (2008) Dechlorination kinetics of monochlorobiphenyls by Fe/Pd: Effects of solvent, temperature, and PCB concentration. Appl Catal B 78:371–380

    Article  CAS  Google Scholar 

  • Flotron V, Delteil C, Padellec Y, Camel V (2005) Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere 59:1427–1437

    Article  CAS  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  CAS  Google Scholar 

  • Gomes HI, Fan G, Ottosen LM, Dias-Ferreira C, Ribeiro AB (2016) Nanoremediation coupled to electrokinetics for PCB removal from soil, Electrokinetics Across Disciplines and Continents. Springer, pp. 331–350. https://doi.org/10.1007/978-3-319-20179-5_17

  • Grebel JE, Pignatello JJ, Mitch WA (2010) Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ Sci Technol 44:6822–6828

    Article  CAS  Google Scholar 

  • Gutiérrez-Hernández RF, Bello-Mendoza R, Hernández-Ramírez A, Malo EA, Nájera-Aguilar HA (2019) Photo-assisted electrochemical degradation of polychlorinated biphenyls with boron-doped diamond electrodes. Environ Technol 40:1–10

    Article  Google Scholar 

  • Guzmán-Maldonado H, Paredes-López O, Biliaderis CG (1995) Amylolytic enzymes and products derived from starch: a review. Crit Rev Food Sci Nutr 35:373–403

    Article  Google Scholar 

  • He F, Zhao D, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360–2370

    Article  CAS  Google Scholar 

  • Henn KW, Waddill DW (2006) Utilization of nanoscale zero-valent iron for source remediation—a case study. Remediat J 16:57–77

    Article  Google Scholar 

  • Hidaka H, Hiroyuki J, Nohara K, Zhao J (1992) Photocatalytic degradation of the hydrophobic pesticide permethrin in fluoro surfactant/TiO2 aqueous dispersions. Chemosphere 25:1589–1597

    Article  CAS  Google Scholar 

  • Hoigné J (1997) Inter-calibration of OH radical sources and water quality parameters. Water Sci Technol 35:1–8

    Article  Google Scholar 

  • Hu P, Long M (2016) Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B 181:103–117

    Article  CAS  Google Scholar 

  • Huang Q, Hong C-S (2000) TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant. Chemosphere 41:871–879

    Article  CAS  Google Scholar 

  • Huang Q, Liu W, Huang W (2013) Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts. J Hazard Mater 262:634–641

    Article  CAS  Google Scholar 

  • Islam MS, Hernández S, Wan H, Ormsbee L, Bhattacharyya D (2018) Role of membrane pore polymerization conditions for pH responsive behavior, catalytic metal nanoparticle synthesis, and PCB degradation. J Membr Sci 555:348–361

    Article  CAS  Google Scholar 

  • Izadifard M, Achari G, Langford CH (2008) The pathway of dechlorination of PCB congener by a photochemical chain process in 2-propanol: the role of medium and quenching. Chemosphere 73:1328–1334

    Article  CAS  Google Scholar 

  • Khalid F, Hashmi MZ, Jamil N, Qadir A, Ali MI (2021) Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. Environ Sci Pollut Res: 28, 10474–10487

  • Khammar S, Bahramifar N, Younesi H (2020) Optimization using the response surface methodology for adsorption of polychlorinated biphenyls (PCBs) from transformer oil by magnetic CMCD-Fe3O4@ SiO2 nanoparticles. Materials Chemistry and Physics: 252, 123195

  • Kim L, Jeon J-W, Lee Y-S, Jeon H-J, Park B-J, Lee H-S, Choi S-D, Lee S-E (2016) Monitoring and risk assessment of polychlorinated biphenyls (PCBs) in agricultural soil collected in the vicinity of an industrialized area. Appl Biol Chem 59:655–659

    Article  CAS  Google Scholar 

  • Koutsospyros A, Pavlov J, Fawcett J, Strickland D, Smolinski B, Braida W (2012) Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. J Hazard Mater 219:75–81

    Article  Google Scholar 

  • Krzyzanowski S, Sylwestrowicz W (1982) The mechanism of the chemisorption-induced segregation of titanium by chlorine in gold—titanium thin films. J Mater Sci Lett 1:35–36

    Article  CAS  Google Scholar 

  • Li C-m, Chen Y-c, Chiu K-h, Yak HK (2006) Synthesis of nanoscale reaction pits network on zerovalent iron powder surface. Surf Sci 600:1382–1390

    Article  CAS  Google Scholar 

  • Li K, Stefan MI, Crittenden JC (2007) Trichloroethene degradation by UV/H2O2 advanced oxidation process: product study and kinetic modeling. Environ Sci Technol 41:1696–1703

    Article  CAS  Google Scholar 

  • Li T, Farrell J (2000) Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ Sci Technol 34:173–179

    Article  CAS  Google Scholar 

  • Li Y, Zhang W, Dai Y, Su X, Xiao Y, Wu D, Sun F, Mei R, Chen J, Lin H (2021): Effective partial denitrification of biological effluent of landfill leachate for Anammox process: start-up, influencing factors and stable operation. Sci Total Environ: 807, Part 3, 150975

  • Lim D-H, Lastoskie CM (2009) Density functional theory studies on the relative reactivity of chloroethenes on zerovalent iron. Environ Sci Technol 43:5443–5448

    Article  CAS  Google Scholar 

  • Lin Z-R, Ma X-H, Zhao L, Dong Y-H (2014) Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction. Chemosphere 101:15–20

    Article  CAS  Google Scholar 

  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  CAS  Google Scholar 

  • Liu Z, Zhang F-S (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Biores Technol 101:2562–2564

    Article  CAS  Google Scholar 

  • Lowry GV, Johnson KM (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38:5208–5216

    Article  CAS  Google Scholar 

  • Lu M-C, Lin C-J, Liao C-H, Ting W-P, Huang R-Y (2001) Influence of pH on the dewatering of activated sludge by Fenton’s reagent. Water Sci Technol 44:327–332

    Article  CAS  Google Scholar 

  • Lucas MS, Peres JA (2009) Treatment of olive mill wastewater by a combined process: Fenton’s reagent and chemical coagulation. J Environ Sci Health Part A 44:198–205

    Article  CAS  Google Scholar 

  • Ma X-H, Zhao L, Dong Y-H (2020) Oxidation degradation of 2, 2′, 5-trichlorodiphenyl in a chelating agent enhanced Fenton reaction: influencing factors, products, and pathways. Chemosphere 246:125849

    Article  CAS  Google Scholar 

  • Ma X-H, Zhao L, Lin Z-R, Dong Y-H (2016) Soil washing in combination with homogeneous Fenton-like oxidation for the removal of 2, 4, 4′-trichlorodiphenyl from soil contaminated with capacitor oil. Environ Sci Pollut Res 23:7890–7898

  • Majid A, Argue S, Sparks B (2002) Removal of Aroclor 1016 from contaminated soil by solvent extraction soil agglomeration process. J Environ Eng Sci 1:59–64

    Article  CAS  Google Scholar 

  • Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053

    Article  CAS  Google Scholar 

  • Miller J, Evans L, Littlewolf A, Trudell D (1999) Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel 78:1363–1366

    Article  CAS  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50

    Article  CAS  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    Article  CAS  Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  Google Scholar 

  • Occulti F, Roda GC, Berselli S, Fava F (2008) Sustainable decontamination of an actual-site aged PCB-polluted soil through a biosurfactant-based washing followed by a photocatalytic treatment. Biotechnol Bioeng 99:1525–1534

    Article  CAS  Google Scholar 

  • Oshita K, Takaoka M, Kitade S-i, Takeda N, Kanda H, Makino H, Matsumoto T, Morisawa S (2010) Extraction of PCBs and water from river sediment using liquefied dimethyl ether as an extractant. Chemosphere 78:1148–1154

    Article  CAS  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne JA, O’shea K (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  • Pham T, Brar S, Tyagi R, Surampalli R (2010) Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge. Ultrason Sonochem 17:38–45

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Pouran SR, Raman AAA, Daud WMAW (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35

    Article  Google Scholar 

  • Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon W-S, Gavaskar A (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39:1309–1318

    Article  CAS  Google Scholar 

  • Quiroga J, Riaza A, Manzano M (2009) Chemical degradation of PCB in the contaminated soils slurry: Direct Fenton oxidation and desorption combined with the photo-Fenton process. Journal of Environmental Science and Health Part A 44:1120–1126

    Article  CAS  Google Scholar 

  • Rastogi A (2008) Sulfate radical-based environmental friendly chemical oxidation processes for destruction of 2-chlorobiphenyl (PCB) and chlorophenols (CPs), University of Cincinnati

  • Ravikumar J, Gurol M (1992) Fenton’s reagent as a chemical oxidant for soil contaminants. Chem Oxid 2:206–229

    CAS  Google Scholar 

  • Rigg T, Taylor W, Weiss J (1954) The rate constant of the reaction between hydrogen peroxide and ferrous ions. J Chem Phys 22:575–577

    Article  CAS  Google Scholar 

  • Roberts AL, Totten LA, Arnold WA, Burris DR, Campbell TJ (1996) Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ Sci Technol 30:2654–2659

    Article  CAS  Google Scholar 

  • Ross G (2004) The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicol Environ Saf 59:275–291

    Article  CAS  Google Scholar 

  • Sarathy V, Tratnyek PG, Nurmi JT, Baer DR, Amonette JE, Chun CL, Penn RL, Reardon EJ (2008) Aging of iron nanoparticles in aqueous solution: effects on structure and reactivity. J Phys Chem C 112:2286–2293

    Article  CAS  Google Scholar 

  • Sato C, Leung S, Bell H, Burkett W, Watts R (1993) Decomposition of perchloroethylene and polychlorinated biphenyls with Fenton's reagent. ACS Publications. https://doi.org/10.1021/bk-1993-0518.ch016

  • Schreier CG, Reinhard M (1994) Transformation of chlorinated organic compounds by iron and manganese powders in buffered water and in landfill leachate. Chemosphere 29:1743–1753

    Article  CAS  Google Scholar 

  • Schwinkendorf W, McFee J, Devarakonda M, Nenninger L, Fadullon F, Donaldson T, Dickerson K (1995) Alternatives to incineration. Technical area status report, Oak Ridge National Lab: 2,7:27006089

  • Shaban YA, El Sayed MA, El Maradny AA, Al Farawati RK, Al Zobidi MI, Khan SU (2016) Photocatalytic removal of polychlorinated biphenyls (PCBs) using carbon-modified titanium oxide nanoparticles. Appl Surf Sci 365:108–113

    Article  CAS  Google Scholar 

  • Shahsavari E, Aburto-Medina A, Taha M, Ball AS (2016) Phytoremediation of PCBs and PAHs by grasses: a critical perspective. Phytoremediation: 3–19. Springer, Cham. https://doi.org/10.1007/978-3-319-41811-7_1

  • Shokoohi R, Bajalan S, Salari M, Shabanloo A (2019) Thermochemical degradation of furfural by sulfate radicals in aqueous solution: optimization and synergistic effect studies. Environ Sci Pollut Res 26:8914–8927

    Article  CAS  Google Scholar 

  • Silva DJ, Pietri FV, Moraes JEF, Bazito RC, Pereira CG (2012) Treatment of materials contaminated with polychlorinated biphenyls (PCBs): comparison of traditional method and supercritical fluid extraction. Am J Analytic Chemist 03(12):891–898

  • Soares PA, Silva TF, Manenti DR, Souza SM, Boaventura RA, Vilar VJ (2014) Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes. Environ Sci Pollut Res 21:932–945

    Article  CAS  Google Scholar 

  • Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39:6237–6245

    Article  CAS  Google Scholar 

  • Su X, Li S, Xie M, Tao L, Zhou Y, Xiao Y, Lin H, Chen J, Sun F (2021) Enhancement of polychlorinated biphenyl biodegradation by resuscitation promoting factor (Rpf) and Rpf-responsive bacterial community. Chemosphere 263:128283

    Article  CAS  Google Scholar 

  • Svab M, Kubal M, Müllerova M, Raschman R (2009) Soil flushing by surfactant solution: Pilot-scale demonstration of complete technology. J Hazard Mater 163:410–417

    Article  CAS  Google Scholar 

  • Takigami H, Etoh T, Nishio T, Sakai S-i (2008) Chemical and bioassay monitoring of PCB-contaminated soil remediation using solvent extraction technology. J Environ Monit 10:198–205

    Article  CAS  Google Scholar 

  • Tang X, Hashmi MZ, Long D, Chen L, Khan MI, Shen C (2014) Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop. Int J Environ Res Public Health 11:3118–3131

    Article  CAS  Google Scholar 

  • Tang X, Hashmi MZ, Zeng B, Yang J, Shen C (2015) Application of iron-activated persulfate oxidation for the degradation of PCBs in soil. Chem Eng J 279:673–680

    Article  CAS  Google Scholar 

  • Torres LG, Lopez RB, Beltran M (2012) Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Phys Chem Earth A/B/C 37:30–36

    Article  Google Scholar 

  • Tratnyek PG, Scherer MM, Deng B, Hu S (2001) Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Res 35:4435–4443

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Article  Google Scholar 

  • Tue NM, Takahashi S, Subramanian A, Sakai S, Tanabe S (2013) Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries. Environ Sci Process Impacts 15:1326–1331

    Article  Google Scholar 

  • Urbaniak M, Baran A, Lee S, Kannan K (2020): Effects of amendments of PCB-containing Hudson River sediment on soil quality and biochemical and growth response of cucumber (Cucumis sativus L. cv ‘Wisconsin SMR 58’). Int J Phytoremediation: 22:1224–1232

  • Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66:1031–1038

    Article  CAS  Google Scholar 

  • Viisimaa M, Karpenko O, Novikov V, Trapido M, Goi A (2013) Influence of biosurfactant on combined chemical–biological treatment of PCB-contaminated soil. Chem Eng J 220:352–359

    Article  CAS  Google Scholar 

  • Vlotman D, Ngila J, Ndlovu T, Doyle B, Carleschi E, Malinga S (2019) Hyperbranched polymer membrane for catalytic degradation of polychlorinated biphenyl-153 (PCB-153) in water. React Funct Polym 136:44–57

    Article  CAS  Google Scholar 

  • Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ Sci Technol 41:1010–1015

    Article  CAS  Google Scholar 

  • Walling C, Goosen A (1973) Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. J Am Chem Soc 95:2987–2991

    Article  CAS  Google Scholar 

  • Walling C (1975) Fenton’s agent revisited. Accts. Chem Res 8:125–131

  • Wang C-B, Zhang W-x (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wang H, Chen J (2012) Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: effect of partition coefficient and sweep efficiency. J Environ Sci 24:1270–1277

    Article  CAS  Google Scholar 

  • Wang Y, Zhou D, Wang Y, Zhu X, Jin S (2011a) Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron. J Environ Sci 23:1286–1292

    Article  CAS  Google Scholar 

  • Wang Y, Zhou D, Wang Y, Wang L, Cang L (2012) Automatic pH control system enhances the dechlorination of 2, 4, 4′-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Fe 0 and Pd/Fe 0. Environ Sci Pollut Res 19:448–457

    Article  CAS  Google Scholar 

  • Wang Z, Yuan R, Guo Y, Xu L, Liu J (2011b) Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: kinetic analysis. J Hazard Mater 190:1083–1087

    Article  CAS  Google Scholar 

  • Watts RJ, Teel AL (2005) Chemistry of modified Fenton’s reagent (catalyzed H 2 O 2 propagations–CHP) for in situ soil and groundwater remediation. J Environ Eng 131:612–622

    Article  CAS  Google Scholar 

  • Weber EJ (1996) Iron-mediated reductive transformations: investigation of reaction mechanism. Environ Sci Technol 30:716–719

    Article  CAS  Google Scholar 

  • Wei Y-T, Wu S-C, Chou C-M, Che C-H, Tsai S-M, Lien H-L (2010) Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Res 44:131–140

    Article  CAS  Google Scholar 

  • Wong F, Bidleman TF (2010) Hydroxypropyl-β-cyclodextrin as non-exhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil. Environ Pollut 158:1303–1310

    Article  CAS  Google Scholar 

  • Wu B-Z, Chen H-Y, Wang SJ, Wai CM, Liao W, Chiu K (2012) Reductive dechlorination for remediation of polychlorinated biphenyls. Chemosphere 88:757–768

    Article  CAS  Google Scholar 

  • Xie M, Xu L, Zhang R, Zhou Y, Xiao Y, Su X, Shen C, Sun F, Hashmi MZ, Lin H (2021) Viable but nonculturable state of yeast Candida sp. strain LN1 induced by high phenol concentrations. Appl Environ Microbiol 87:e01110-e1121

    Article  CAS  Google Scholar 

  • Xu C, Etcheverry T (2008) Hydro-liquefaction of woody biomass in sub-and super-critical ethanol with iron-based catalysts. Fuel 87:335–345

    Article  CAS  Google Scholar 

  • Yak HK, Lang Q, Wai CM (2000) Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water. Environ Sci Technol 34:2792–2798

    Article  CAS  Google Scholar 

  • Yan W, Herzing AA, Li X-q, Kiely CJ, Zhang W-x (2010) Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environ Sci Technol 44:4288–4294

    Article  CAS  Google Scholar 

  • Yan W, Lien H-L, Koel BE, Zhang W-x (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15:63–77

    Article  CAS  Google Scholar 

  • Yap CL, Gan S, Ng HK (2011) Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 83:1414–1430

    Article  CAS  Google Scholar 

  • Yoon J, Lee Y, Kim S (2001) Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Sci Technol 44:15–15

    Article  CAS  Google Scholar 

  • Yukselen-Aksoy Y, Khodadoust AP, Reddy KR (2010) Destruction of PCB 44 in spiked subsurface soils using activated persulfate oxidation. Water Air Soil Pollut 209:419–427

    Article  CAS  Google Scholar 

  • Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319

    Article  CAS  Google Scholar 

  • Zhang B-T, Zhang Y, Teng Y, Fan M (2015a) Sulfate radical and its application in decontamination technologies. Crit Rev Environ Sci Technol 45:1756–1800

    Article  CAS  Google Scholar 

  • Zhang H, Zhang B, Liu B (2015b) Integrated nanozero valent iron and biosurfactant-aided remediation of PCB-contaminated soil. Appl Environ Soil Sci 2016: 5390808, https://doi.org/10.1155/2016/5390808

  • Zhang W-x, Wang C-B, Lien H-L (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395

    Article  CAS  Google Scholar 

  • Zhang W-x (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang X, Li F, Liu T, Peng C, Duan D, Xu C, Zhu S, Shi J (2013) The influence of polychlorinated biphenyls contamination on soil protein expression. Int Sch Res Not 2013:126391, 6. https://doi.org/10.1155/2013/126391

  • Zhou Z, Liu X, Sun K, Lin C, Ma J, He M, Ouyang W (2019) Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review. Chem Eng J 372:836–851

    Article  CAS  Google Scholar 

  • Zhu X, Zhou D, Wang Y, Cang L, Fang G, Fan J (2012) Remediation of polychlorinated biphenyl-contaminated soil by soil washing and subsequent TiO 2 photocatalytic degradation. J Soils Sediments 12:1371–1379

    Article  CAS  Google Scholar 

  • Zhu X, Wang Y, Qin W, Zhang S, Zhou D (2016) Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected by cosolvents and TiO2 catalyst. Chemosphere 144:628–634

    Article  CAS  Google Scholar 

  • Zhuang Y, Ahn S, Seyfferth AL, Masue-Slowey Y, Fendorf S, Luthy RG (2011) Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ Sci Technol 45:4896–4903

    Article  CAS  Google Scholar 

Download references

Funding

Higher Education Commission of Pakistan NRPU projects 7958 and 7964. Thanks to the Pakistan Science Foundation project PSF/Res/CP/C-CUI/Envr (151) for providing the funding. Furthermore, thanks are due to the Pakistan Academy of Sciences project 3–9/PAS/98 for funding. Shams Ur Rehman was working as a Research Assistant under Higher Education Commission of Pakistan NRPU projects 7958.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Zaffar Hashmi developed idea and wrote the paper. Muhammad Kalim, Xiaomei Su, Paromita Chakraborty, Umar Farooq, and Shams Ur Rehman revised and wrote some parts of paper.

Corresponding author

Correspondence to Muhammad Zaffar Hashmi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ricardo A. Torres-Palma.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The correct family name of the 2nd Author is Kaleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmi, M.Z., Kaleem, M., Farooq, U. et al. Chemical remediation and advanced oxidation process of polychlorinated biphenyls in contaminated soils: a review. Environ Sci Pollut Res 29, 22930–22945 (2022). https://doi.org/10.1007/s11356-022-18668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18668-3

Keywords

Navigation