Skip to main content
Log in

Distribution and potential ecological risk assessment of trace elements in the stream water and sediments from Lanmuchang area, southwest Guizhou, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Trace elements contamination in sediment is regarded as the global crisis with a large share in developing countries like China. Water and sediment samples were collected during (2016) from Qingshui Stream and analyzed for major physicochemical properties and trace elements by using ICP-MS. Our result of sediments showed that studied trace elements (except Pb, Cd, Co) had a concentration higher than Chinese sediment guideline as well as stream water data for studied trace elements (except Cr, Pb, Cd, Cu, and Zn) had a higher concentration than the maximum permissible safe limit of WHO. Contamination factor (CF) confirmed a moderate to high contamination in the sediment samples due to As and Tl, respectively. The values of pollution load index (PLI) were found above one (> 1), describing the progressive sediment quality decline. Pearson correlation showed that there was a significant positive association between Tl and As (r = 0.725, p < 0.05) in sediment samples. Results revealed that water-rock interaction, weathering of Tl sulfide mineralization, and hydrogeological conditions were major sources of stream water and sediments contamination in the study area. This experimental study contributes to a better understanding of the geochemistry and prevention of trace element contamination in sediments from Lanmuchang area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas SR, Sabir SM, Ahmad SD, Boligon AA, Athayde ML (2014) Phenolic profile, antioxidant potential and DNA damage protecting the activity of sugarcane (Saccharum of ficinarum). Food Chem 147:10–16

    Article  CAS  Google Scholar 

  • Abrahim G, Parker R (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136(1-3):227–238

    Article  CAS  Google Scholar 

  • Abílio GS, Cupelo ACG, Rezende CE (2012) Heavy metal distribution in sediments of an offshore exploration area, Santos basin, Brazil. Geochim Brasil 20:35–44

    Google Scholar 

  • Adhikary PP, Chandrasekharan H, Chakraborty D, Kamble K (2010) Assessment of groundwater pollution in West Delhi, India using geo statistical approach. Environ Monit Assess 167:599–615

    Article  CAS  Google Scholar 

  • Adomako D, Nyarko B, Dampare S et al (2008) Determination of toxic elements in waters and sediments from River Subin in the Ashanti region of Ghana. Environ. Monit Assess 141(1-3):165–175

    Article  CAS  Google Scholar 

  • Ahmad R, Farooqi A, Asif J, Ali W (2016) Distribution, enrichment, and source identification of selected heavy metals in surface sediments of the Siran River, Mansehra, Pakistan. Environ Monit Assess 188(10):572–587

    Article  CAS  Google Scholar 

  • Ahmed KM, Bhattacharya P, Hasan MA (2004) Arsenic contamination in groundwater in alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200

    Article  CAS  Google Scholar 

  • Alamdar A, Eqani SAMAS, Ali SW, Sohail M, Bhowmik AK, Subhani M et al (2016) Human arsenic exposure via dust across different ecological zones throughout the Pakistan. Ecotoxicol Environ Saf 126:219–227

    Article  CAS  Google Scholar 

  • Ali S, Feng JG, Farida B, Rasool A, Ismail M, Yongjiu C, Shaukat A, Shujaat A (2016) Health assessment using aqua-quality indicators of alpine streams (Khunjerab National Park), Gilgit, Pakistan. Journal of Environmental Science and Pollution Research 24(5):4685–4698

    Article  CAS  Google Scholar 

  • Amin B, Ismail A, Arshad A, Yap CK, Kamarudin MS (2009) Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environ Monit Assess 148:291–305

    Article  CAS  Google Scholar 

  • Arain M, Kazi T, Jamali M, Jalbani N, Afridi H, Shah A (2008) Total dissolved and bioavailable elements in water and sediment samples and their accumulation in<i>Oreochromismossambicus</i> of polluted Manchar Lake. Chemosphere 70:1845–1856

    Article  CAS  Google Scholar 

  • Armitage PD, Bowes MJ, Vincent HM (2007) Long-term changes in macroinvertebrate communities of a heavy metal polluted stream: the River Nent(Cumbria, UK) after 28 years. River Res Appl 23:997–1015

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bai J, Xiao R, Zhang K et al (2012) Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. J Hydrol 450-451:244–253

    Article  CAS  Google Scholar 

  • Banat KM, Howari FM, Al-Hamada AA (2005) Heavy metals in urban soils of Central Jordan: should we worry about their environmental risks? Environ. Res 97:258–273

    CAS  Google Scholar 

  • Benhaddya ML, Hadjel M (2014) Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria. Environ Earth Sci 71(3):1473–1486

    Article  CAS  Google Scholar 

  • Bhowmik AV et al (2015) Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan. Sci Total Environ 538:306–316

    Article  CAS  Google Scholar 

  • Birch GF, Olmos MA (2008) Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES J Mar Sci 65:1407–1413

    Article  CAS  Google Scholar 

  • Buttafuoco GA, Tallarico G, Falcone I, Guagliardi A (2010) Geostatistical approach for mapping and uncertainty assessment of geogenic radon gas in the soil in an area of southern Italy. Environ Earth Sci 61:491–505

    Article  CAS  Google Scholar 

  • Caeiro S, Costa MH, Ramos TB, Fernandes F, Silveira N, Coimbra A, Medeiros G, Painho M (2005) Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecol Indic 5:151–169

    Article  CAS  Google Scholar 

  • Carrillo-Gonzalez R, Simunek J, Sauve S, Adriano D (2006) Mechanisms and pathways of trace element mobility in soils. Adv Agron 91:111–121

    Article  CAS  Google Scholar 

  • Chadha D, Ray S (1999) High incidence of arsenic in groundwater in West Bengal. CGWB, Ministry of Water Resources, Faridabad, India.

  • Chen JS, Wang Z, Liu YJ (1989) Potential risk of heavy metal pollution in water: assessment by sedimentology measure. Environ Sci Technol 9(1):16–25 (In Chinese)

    CAS  Google Scholar 

  • Chen K, Jiao JJ, Huang J, Huang R (2007) Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environ Pollut 147(3):771–780

    Article  CAS  Google Scholar 

  • Demirak A, Yilmaz F, Tuna AL, Ozdemir N (2006) Heavy metals in water, sediment, and tissues of Leuciscuscephalus from a stream in southwestern Turkey. Chemosphere 63(9):1451–1458

    Article  CAS  Google Scholar 

  • Deng Y, Cai C, Xia D, Ding S, Chen J (2017) Fractal features of soil particle size distribution under different land-use patterns in the alluvial fans of collapsing gullies in the hilly granitic region of southern China. PLoS One 12(3):e0173555

    Article  CAS  Google Scholar 

  • Dou Y, Li J, Zhao J, Hu B, Yang S (2013) Distribution, enrichment, and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Mar Pollut Bull 67(1):137–145

    Article  CAS  Google Scholar 

  • Duman F, Aksoy A, Demirezen D (2007) Seasonal variability of heavy metals in surface sediments of Lake Sapanca, Turkey. Environ Monit Assess 133:277–283

    Article  CAS  Google Scholar 

  • Edgell K (1989) USEPA method study 37 SW-846 method 3050 acid digestion of sediments, sludges, and soils. US Environmental Protection Agency, Environmental Monitoring Systems Laboratory

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324

    Article  CAS  Google Scholar 

  • Feng YC, Wu JH, Zhu T, Bai ZP (2004) Source apportionment of TSP and PM10 in Jinan by chemical mass balance (CMB) receptor model. Res Environ Sci 2:1–5

    Google Scholar 

  • Fernandes C, Fontainhas-Fernandes A, Cabral D, Salgado MA (2008) Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz–Paramos lagoon, Portugal. Environ Monit Assess 136:267–275

    Article  CAS  Google Scholar 

  • Franco-Uria A, Lopez-Mateo C, Roca E, Fernandez-Marcos ML (2009) Source identification of heavy metals in pasture land by multivariate analysis in NW Spain. J Hazard Mater 165:1008–1015

    Article  CAS  Google Scholar 

  • Fu J, Wang Q, Wang H, Yu H, Zhang X (2014) Monitoring of nondestructive sampling strategies to assess the exposure of avian species in Jiangsu Province, China to heavy metals. Environ Sci Pollut Res 21(4):2898–2906

    Article  CAS  Google Scholar 

  • Gao X, Chen CTA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46(6):1901–1911

    Article  CAS  Google Scholar 

  • Ghrefat HA, Abu-Rukah Y, Rosen MA (2011) Application of geo-accumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environ Monit Assess 178:95–109

    Article  CAS  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  CAS  Google Scholar 

  • Guagliardi IG, Buttafuoco D, Cicchella R, De Rosa A (2013) Multivariate approach foranomaly separation of potentially toxic trace elements in urban and peri-urbansoils: an application in a southern Italy area. J Soils Sediments 13:117–128

    Article  CAS  Google Scholar 

  • Gutierrez M, Alarcón-Herrera MT, Camacho LM (2009) Geographical distribution of arsenic in sediments within the Rio Conchos Basin, Mexico. Environ Geol 57(4):929–935

    Article  CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Harikumar PS, Nasir UP, Mujeebu RMP (2009) Distribution of heavy metals in the core sediments of a tropical wetland system. Int J Environ Sci Technol 6(2):225–232

    Article  CAS  Google Scholar 

  • Hernandez L, Probst A, Luc Probst J, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312(1-3):195–219

    Article  CAS  Google Scholar 

  • Islam MS, Han S, Masunaga S (2014) Assessment of trace metal contamination in water and sediment of some rivers in Bangladesh. J Water Environ Technol 12:109–121

    Article  Google Scholar 

  • Islam MS, Ahmed MK, Raknuzzaman M, HabibUllah-Al-Mamun M, Islam MK (2015) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Indic 48:282–288

    Article  CAS  Google Scholar 

  • Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Hoque MF (2015a) Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ Earth Sci 73:1837–1848

    Article  CAS  Google Scholar 

  • Jia YL, Xiao TF, Zhou GZ, Ning ZP (2013) Thallium at the interface of soil and green cabbage (Brassica oleracea L. var. capitata L.): soil–plant transfer and influencing factors. Sci Total Environ 451:140–147

    Article  CAS  Google Scholar 

  • Jones BF, Naftz DL, Spencer RJ, Oviatt CG (2009) Geochemical evolution of great salt lake, Utah, USA. Aquat Geochem 15:95–121

    Article  CAS  Google Scholar 

  • Kahlown MA, Ashraf M, Hussain M, Salam HA, Bhatti AZ (2006) Impact assessment of sewerage and industrial effluents on water resources, soil, crops and human health in Faisalabad. Pakistan Council for Research in Water Resources Khyabane-Johar, H-8/1, Islamabad.

  • Kansal A, Siddiqui NA, Gautam A (2013) Assessment of heavy metals and their interrelationships with some physicochemical parameters in eco-efficient rivers of the Himalayan region. Environ Monit Assess 185(3):2553–2563

    Article  CAS  Google Scholar 

  • Khan S, Rehman S, Khan AZ, Khan MA, Shah MT (2010) Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol Environ Saf 73(7):1820–1827

    Article  CAS  Google Scholar 

  • Khan S, Shahnaz M, Jehan N, Rehman S, Shah M, Din I (2012) The water quality and human health risk in Charsadda district, Pakistan. J Clean Prod 10:10–16

    Google Scholar 

  • Khan S, Shahnaz M, Jehan N (2013) Drinking water quality and human health risk in Charsadda District, Pakistan. J Clean Prod 60:93–101

    Article  CAS  Google Scholar 

  • Kucuksezgin F, Uluturhan E, Batki H (2008) Distribution of heavy metals in water, particulate matter, and sediments of Gediz River (Eastern Aegean). Environ Monit Assess 141:213–225

    Article  CAS  Google Scholar 

  • Kwon YT, Lee CW (2001) Ecological risk assessment of sediment in wastewater discharging area by means of metal speciation. Microchem J 70:255–264

    Article  CAS  Google Scholar 

  • Li FY, Fan ZP, Xiao PF, Oh K, Ma XP, Hou W (2009) Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environ Geol 54:1815–1823

    Article  CAS  Google Scholar 

  • Li J, Li F, Liu Q, Zhang Y (2014) Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: evidence from isotopes and hydrochemistry. Sci Total Environ 472:979–988

    Article  CAS  Google Scholar 

  • Liu Y, Wang Q, Zhuang W, Yuan Y, Jiao K, Wang M, Chen Q (2018) Calculation of Thallium’s toxicity coefficient in the evaluation of potential ecological risk index: a case study. Chemosphere 194:562–569

    Article  CAS  Google Scholar 

  • Long J, Luo K (2017) Trace element distribution and enrichment patterns of Ediacaran-early Cambrian, Ziyang selenosis area, Central China: constraints for the origin of selenium. J Geochem Explor 172:211–230

    Article  CAS  Google Scholar 

  • Lopez-Pazos SA, Arias ACR, Ospina JS, Ceron J (2010) The activity of Bacillus thuringian is hybrid protein against a lepidopteron and a coleopteran pest. FEMS Microbiol Lett 302(2):93–98

    Article  CAS  Google Scholar 

  • Louhi A, Hammadi A, Achouri M (2012) Determination of some heavy metal pollutants in sediments of the Seybouse River in Annaba, Algeria. Air, Soil and Water Research 5:91–101

    Article  CAS  Google Scholar 

  • Lv P (2014) Analysis method of thallium in water. J Hunan Univ Technology 28(4):22–24 (In Chinese with English abstract)

    Google Scholar 

  • Magesh N, Chandrasekar N, Roy DV (2011) Spatial analysis of trace element contamination in sediments of Tamiraparani estuary, southeast coast of India. Estuar Coast Shelf Sci 92(4):618–628

    Article  CAS  Google Scholar 

  • Masoud AA (2014) Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. J Afr Earth Sci 95:123–137

    Article  CAS  Google Scholar 

  • Mico C, Recatala L, Peris M, Scanchez J (2006) Assessing heavy metal sources in agricultural soils of European Mediterranean area by multivariate analysis. Chemosphere 65:863–872

    Article  CAS  Google Scholar 

  • Moghaddam AA, Fijani E (2008) Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ Geol 56:281–287

    Article  CAS  Google Scholar 

  • Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55(3):431–442

    Article  CAS  Google Scholar 

  • Muhammad S, Shah MT, Khan S (2011) Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem J 98:334–343

    Article  CAS  Google Scholar 

  • Mukherjee A, Bhattacharya P, Shi F, Fryar AE, Mukherjee AB, Xie ZM, Jacks G, Bundschuh J (2009) Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Appl Geochem 24:1835–1851

    Article  CAS  Google Scholar 

  • Muller G (1979) Heavy metals in the sediment of the Rhine-Changes Seity. 1971. Umsch Wiss Tech 79:778–783

    Google Scholar 

  • Müller PJ, Suess E (1979) Productivity, sedimentation rate and sedimentary organic matter in the oceans. northern Pakistan. Deep-Sea Res 26:1347

    Article  Google Scholar 

  • Nabila B, Ahmed B, Kacem M (2014) An assessment of the physicochemical parameters of Oran sebkha basin. Appl Water Sci 4:351–356

    Article  CAS  Google Scholar 

  • Nafees M, Jan MR, Khan H, Rashid N, Khan F (2009) Soil contamination in Swat valley caused by cadmium and copper. Sarhad J Agric 25:37–43

    Google Scholar 

  • Navoni J, De Pietri D, Olmos V, Gimenez C, Mitre GB, de Titto E, Lepori EV (2014) Human health risk assessment with spatial analysis: study of a population chronically exposed to arsenic through drinking water from Argentina. Sci Total Environ 499:166–174

    Article  CAS  Google Scholar 

  • Nazeer S, Hashmi MZ, Malik RN (2014) Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan. Ecol Indic 43:262–270

    Article  CAS  Google Scholar 

  • Nickson R, McArthur J, Shrestha B, Kyaw-Myint T, Lowry D (2005) Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl Geochem 20:55–68

    Article  CAS  Google Scholar 

  • Pekey H, Karakaş D, Ayberk S et al (2004) Ecological risk assessment using trace elements from surface sediments of İzmit Bay (northeastern Marmara Sea) Turkey. Mar Pollut Bull 48:946–953

    Article  CAS  Google Scholar 

  • Pereira E, Baptista-Neto JA, Smith BJ, Mcallister JJ (2007) The contribution of heavy metal pollution derived from highway runoff to Guanabara Bay sediments Rio de Janeiro/Brazil. An. Acad Bras Cienc 79:739–750

    Article  CAS  Google Scholar 

  • Piper AM (1994) A graphic procedure in the geochemical interpretation of water analysis. Am Geophys Union Trans 25:914–923

    Article  Google Scholar 

  • Posthuma L, Suter GW, Traas TP (2010) Species sensitivity distributions in ecotoxicology. Taylor & Francis, USA, pp 38–48

    Google Scholar 

  • Pradeep JK (1998) Hydrology and quality of ground water Hirapur district, Sagar (M.P.). Pollut Res 17(1):91–94

    Google Scholar 

  • Qi L, Hu JD, Conrad G (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51:507–513

    Article  Google Scholar 

  • Rasool A, Xiao TF (2018) Response of microbial communities to elevated thallium contamination in river sediments. Geomicrobiol J. https://doi.org/10.1080/01490451.2018.1481159

  • Rasool A, Farooqi A, Masood S, Hussain K (2016a) Arsenic in groundwater and its health risk assessment in drinking water of Mailsi, Punjab, Pakistan. Human and Ecological Risk Assessment: An International Journal 22:187–202

    Article  CAS  Google Scholar 

  • Rasool A, Farooqi A, Xiao T, Masood S, Kamran AM, Bibi S (2016b) Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab, Pakistan. J Geochem Explor 169:89–99

    Article  CAS  Google Scholar 

  • Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152

    Article  CAS  Google Scholar 

  • Rodríguez JA, Nanos N, Grau JM, Gil L, López-Arias M (2008) Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 70(6):1085–1096

    Article  CAS  Google Scholar 

  • Ryu BG, Park GY, Yang JW, Baek K (2011) Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil. Sep Purif Technol 79(2):170–176

    Article  CAS  Google Scholar 

  • Salati S, Moore F (2010) Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environ Monit Assess 164:677–689

    Article  CAS  Google Scholar 

  • Santos-Bermejo JC, Beltrán R, Gómez-Ariza JL (2003) Spatial variations of heavy metals contamination in sediments from Odiel River (Southwest Spain). Environ Int 29:69–77

    Article  CAS  Google Scholar 

  • Sayadi M, Sayyed M, Kumar S (2010) Short-term accumulative signatures of heavy metals in river bed sediments in the industrial area, Tehran, Iran. Environ Monit Assess 162(1-4):465–473

    Article  CAS  Google Scholar 

  • Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center pp 1- 23

  • Selvaraj K, Ram Mohan V, Szefer P (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Mar Pollut Bull 49(3):174–185

    Article  CAS  Google Scholar 

  • SEPA (1995) Environmental quality standard for soils. State Environmental Protection Administration, China GB15618-1995

  • Shah MT, Begum S, Khan S (2010) Pedo and biogeochemical studies of mafic and ultramafic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environ Earth Sci 60:1091–1102

    Article  CAS  Google Scholar 

  • Shah MT, Ara J, Muhammad S, Khan S, Tariq S (2012) Health risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohammed agency, northern Pakistan. J Geochem Explor 118:60–67

    Article  CAS  Google Scholar 

  • Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in the ambient particulate matter at the rural and urban location of Delhi. J Hazard Mater 175:600–607

    Article  CAS  Google Scholar 

  • Shyamala R, Shanthi M, Lalitha P (2008) Physicochemical analysis of Bore well water samples of Telungupalayam area in Coimbatore district, Tamilnadu, India. E-Journal of Chemistry 5:924–929

    Article  Google Scholar 

  • Silva EF, Almeida SFP, Nunes ML, Luis AT, Borg F, Hedlundc M, Sá CM, Patinha C, Teixeira P (2009) Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Sci Total Environ 407:5620–5636

    Article  CAS  Google Scholar 

  • Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis TH (2003) Assessment of the surface water quality in Northern Greece. Water Res 37:4119–4124

    Article  CAS  Google Scholar 

  • Singh KP, Mohan D, Sinha S, Dalwani R (2004) Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere 55(2):227–255

    Article  CAS  Google Scholar 

  • Singh KP, Mohan D, Singh VK, Malik A (2005) Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges, India. J Hydrol 312(1):14–27

    Article  CAS  Google Scholar 

  • Sohrabi T, Ismail A, Nabavi MB (2010) Distribution and Normalization of some Metals in Surface Sediments from South Caspian Sea. Bull Environ Contam Toxicol 85(5):502–508

    Article  CAS  Google Scholar 

  • Srebotnjak T, Carr G, de Sherbinin A, Rickwood C (2012) A global water quality index and hot-deck imputation of missing data. Ecol Indic 17:108–119

    Article  CAS  Google Scholar 

  • Strachan S (2010) Heavy metal. Curr Anaesth Crit Care 21:44–48

    Article  Google Scholar 

  • Su S, Xiao R, Mi X, Xu X, Zhang Z, Wu J (2013) Spatial determinants of hazardous chemicals in surface water of Qiantang River, China. Ecol Indic 24:375–381

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Xie X et al (2010) Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater 174:455–462

    Article  CAS  Google Scholar 

  • Sun JL, Zou X, Ning ZP, Sun M, Peng JQ, Xiao TF (2012) Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination. Sci Total Environ 441:258–264

    Article  CAS  Google Scholar 

  • SunBaek B, Xiao Guang M (2004) A review of arsenic interactions with anions and iron hydroxides. Environmental Engineering Research 9:184–192

    Article  Google Scholar 

  • Sungur A (2016) Heavy metals mobility sources and risk assessment in soils and uptake by apple (MalusdomesticaBorkh.) leaves in urban apple orchards. Arch Agron Soil Sci 62:1051–1065

    CAS  Google Scholar 

  • Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition of natural radionuclide contents in the river sediments. Appl Radiat Isot 69(10):1466–1474

    Article  CAS  Google Scholar 

  • Suthar S, Nema AK, Chabukdhara M, Gupta SK (2009) Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. J Hazard Mater 171(1):1088–1095

    Article  CAS  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39(6):611–627

    Article  CAS  Google Scholar 

  • Wang Y, Hu JW, Xiong KN, Huang XF, Duan SM (2012) Distribution of heavy metals in core sediments from Baihua lake. Proceed Environ Sci 16(4):51–58

    Article  CAS  Google Scholar 

  • Wang S, Wang Y, Zhang R, Wang W, Xu D, Guo J, Li P, Yu K (2015) Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China. Sci Total Environ 532:645–654

    Article  CAS  Google Scholar 

  • Wenning RJ, Batley GE, Ingersoll CG, Moore DW (2002) Use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Fairmont, Montana

    Google Scholar 

  • WHO (1993) World Health Organization guidelines for drinking water quality. Recommendations, Vol. 1, 2nd edn. Geneva

  • Wogu MD, Okaka CE (2011) Pollution studies on Nigerian rivers: heavy metals in surface water of warrior river, Delta State. Journal of Biodiversity and Environmental Sciences 1(3):7–12

    Google Scholar 

  • Wu B, Wang G, Wu J, Fu Q, Liu C (2014) Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs. PLoS One 9(7):e102101

    Article  Google Scholar 

  • Xiao TF, Boyle D, Guha J, Rouleau A, Hong YT, Zheng BS (2003) Groundwater related thallium transfer processes and their impacts on the ecosystem: southwest Guizhou Province, China. Appl Geochem 18:675–691

    Article  CAS  Google Scholar 

  • Xiao TF, Guha J, Boyle D, Liu CQ, Zheng BS, Wilson G et al (2004) Naturally occurring thallium: a hidden geoenvironmental health hazard? Environ Int 30:501–507

    Article  CAS  Google Scholar 

  • Xiao TF, Guha J, Liu CQ, Zheng BS, Wilson G, Ning ZP et al (2007) Potential health risk in areas of high natural concentrations of thallium and importance of urine screening. Appl Geochem 22:919–929

    Article  CAS  Google Scholar 

  • Xiao TF, Yang F, Li SH, Zheng BS, Ning ZP (2012) Thallium pollution in China: a geoenvironmental perspective. Sci Total Environ 421:51–58

    Article  CAS  Google Scholar 

  • Xiao EZ, Krumins V, Dong YR, Xiao TF, Ning ZP, Xiao QX, Sun WM (2016) Microbial diversity and community structure in an antimony-rich tailings dump. Appl Microbiol Biotechnol 100:7751–7763

    Article  CAS  Google Scholar 

  • Xu ZQ, Ni SJ, Tuo XG, Zhang CJ (2008) Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ Sci Technol 31(2):112–115 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Yang ZF, Wang Y, Shen ZY, Niu JF, Tang ZW (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J Hazard Mater 166(2e3):1186–1194

    Article  CAS  Google Scholar 

  • Yu GB, Liu Y, Yu S, Wu SC, Leung AOW, Luo XS, Xu B, Li HB, Wong MH (2011) Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments. Chemosphere 85:1080–1087

    Article  CAS  Google Scholar 

  • Yuan GL, Liu C, Chen L, Yang Z (2011) Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. J Hazard Mater 185:336–345

    Article  CAS  Google Scholar 

  • Zahra A, Hashmi MZ, Malik RN, Ahmed Z (2014) Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the KurangNallah-feeding tributary of the Rawal Lake reservoir, Pakistan. Sci Total Environ 470:925–933

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang B, Long J, Zhang X, Chen G (1997) Thallium pollution associated with mining of thallium deposits. Sci China Ser D Earth Sci 41(1):75–81

    Article  Google Scholar 

  • Zhang XH, Xiao BD, Chen ZJ, Hui Y, Xu XQ (2002) Characteristics of the distribution of Cu, Pb, Cd, Cr, Zn in Xiangxi River (in Chinese). Resour Environ Yangtze Basin 11:269–273

    CAS  Google Scholar 

  • Zhang H, Shan B (2008) Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China. Sci Total Environ 399:113–120

    Article  CAS  Google Scholar 

  • Zheng N, Wang Q, Liang Z et al (2008) Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, northeast China. Environ Pollut 154:135–142

    Article  CAS  Google Scholar 

  • Zhou F, Guo HC, Hao ZJ (2007) Spatial distribution of heavy metals in Hong Kong’s marine sediments and their human impacts: a GIS-based chemometric approach. Mar Pollut Bull 54:1372–1384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Constructive comments and helpful suggestions from the reviewers are acknowledged, which have helped improve this manuscript considerably.

Funding

This work was supported by the National Natural Science Foundation of China [grant number U1612442], [grant number 41473124], and [grant number 41673138]; the STS Net Plan of the Chinese Academy of Sciences [grant number KFJ-STS-ZDTP-005]; and the Public Welfare Foundation of the Ministry of Environmental Protection of China [grant number 201509051].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tangfu Xiao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Responsible editor: Severine Le Faucheur

Highlights

• Availability of trace elements in stream water and sediment samples were assessed.

• Smelting and mining discharges constituted the primary anthropogenic sources of trace elements in the study area.

• Tl, As, and Co enrichment was more in sediment studied samples.

Electronic supplementary material

ESM 1

(DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, A., Xiao, T. Distribution and potential ecological risk assessment of trace elements in the stream water and sediments from Lanmuchang area, southwest Guizhou, China. Environ Sci Pollut Res 26, 3706–3722 (2019). https://doi.org/10.1007/s11356-018-3827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3827-8

Keywords

Navigation