Skip to main content
Log in

Short-term accumulative signatures of heavy metals in river bed sediments in the industrial area, Tehran, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In modern civilization, numerous anthropogenic activities release a variety of pollutants into the environment and with anomalous enrichment of heavy metals it causes surface and subsurface contamination. The aquatic sediments provide pertinent tools for the quality assessment of urban and industrial environments in large cities. The present study reveals short-term accumulative trends of heavy metals (Co, Cd, and Pb) in the sand and silt dominated riverbed sediments from Chitgar industrial area (Tehran, Iran) between the period of May 2007 and May 2008. Lead demonstrates highest concentration in residential areas, cadmium in and around industrial areas, whereas cobalt shows least variability. Geo-accumulation index implies moderately to highly polluted sediments with respect to Cd and Pb. With few exceptions, all three metals at different sampling stations display short-term increasing trends, independent of seasonal variability with urban and industrial distends along the river being the chief sources of contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bermejo Santos, J. C., Beltran, R., & Ariza, G. (2003). Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environment International, 29, 69–77. doi:10.1016/S0160-4120(02)00147-2.

    Article  CAS  Google Scholar 

  • Bertin, C., & Bourg, A. C. M. (1995). Trend in the heavy metal content (Cd, Pb, Zn) of river sediment in the drainage basin of smelting activities. Water Research, 29, 1729–1736. doi:10.1016/0043-1354(94)00327-4.

    Article  CAS  Google Scholar 

  • Borovec, Z. (1996). Evaluation of the concentration of trace elements in stream sediments by factor and cluster analysis and sequential extraction procedure. The Science of the Total Environment, 177, 237–250. doi:10.1016/0048-9697(95)04901-0.

    Article  CAS  Google Scholar 

  • Callender, E., & Rice, K. C. (2000). The urban environmental gradient: Anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environmental Science & Technology, 34, 232–238. doi:10.1021/es990380s.

    Article  CAS  Google Scholar 

  • Camusso, M., Galassi, S., & Vignati, D. (2002). Assessment of river Po sediment quality by micropollutant analysis. Water Research, 36, 2491–2504. doi:10.1016/S0043-1354(01)00485-7.

    Article  CAS  Google Scholar 

  • Committee of Soil Standard Methods for Analyses and Measurements (1986). Soil standard methods for analyses and measurements. Tokyo: Hakuyusha.

    Google Scholar 

  • Dewan, M. L., & Famouri, J. (1964). The soil of Iran (p. 139). SWRI, FAO, Rome.

  • Forstner, U., & Salomons, W. (1980). Trace metal analysis on polluted sediments. Part I: Assessment of source and intensities. Environmental Technology Letters, 1, 494–505. doi:10.1080/09593338009384006.

    Article  Google Scholar 

  • Forstner, U., & Salomons, W. (1984). Metal in the hydro cycle. Berlin: Springer.

    Google Scholar 

  • Goncalves, E. P. R., Boaventura, R. A. R., & Mouvet, C. (1992). Sediments and aquatic mosses as pollution indicators for heavy metals in the Ave River basin (Portugal). The Science of the Total Environment, 142, 143–156. doi:10.1016/0048-9697(94)90322-0.

    Article  Google Scholar 

  • Harrison, R. M., Laxen, D. P. H., & Wilson, S. J. (1981). Chemical associations of lead, cadmium, copper, and zinc in street dusts and roadside soils. Environmental Science & Technology, 15, 1378–1383. doi:10.1021/es00093a013.

    Article  CAS  Google Scholar 

  • Huang, W., Campredon, R., Abrao, J. J., Bernat, M., & Latouche, C. (1994). Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil). Environmental Geology, 23, 241–247.

    CAS  Google Scholar 

  • Khoa, L. V., Cu, N. X., Duc, L., Hiep, T. K., & Chanh, C. V. (1996). Methods of soil, water, fertilizer and plant analysis. Hanoi: Education Publisher (in Vietnamese).

    Google Scholar 

  • Klavins, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. (2000). Heavy metals in river of Latvia. The Science of the Total Environment, 262, 175–183. doi:10.1016/S0048-9697(00)00597-0.

    Article  CAS  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2005). Heavy metal distribution and contamination in soils of Thane–Belapur industrial development area, Mumbai, Western India. Environmental Geology, 47(8), 1054–1061. doi:10.1007/s00254-005-1238-x.

    Article  CAS  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2007). Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275. doi:10.1007/s10661-006-9224-7.

    Article  CAS  Google Scholar 

  • Lapaquellerie, Y., Jouanneau, J. M., Maillet, N., & Latouche, C. (1995). Cadmium pollution in sediments of the Lot river (France): Estimate of the mass of cadmium. Environmental Technology, 16, 1145–1154. doi:10.1080/09593331608616350.

    Article  CAS  Google Scholar 

  • Lietz, W., & Galling, G. (1989). Metals from sediments. Water Research, 23, 247–252. doi:10.1016/0043-1354(89)90049-3.

    Article  CAS  Google Scholar 

  • Lobersli, E. M., & Steinnes, E. (1988). Metal uptake in plants from a birch forest area near a copper smelter in Norway. Water, Air, and Soil Pollution, 37(1–2), 25. doi:10.1007/BF00226477.

    CAS  Google Scholar 

  • Martin, C. W. (2004). Heavy metal storage in near channel sediments of the Lahn River, Germany. Geomorphology, 61, 275–285. doi:10.1016/j.geomorph.2004.01.003.

    Article  Google Scholar 

  • Muller, G. (1979). Schwermetalle in den sedimenten des Rheins-Veranderungen seit 1971. Umschau, 79(24), 778–783.

    Google Scholar 

  • Muramoto, J., Goto, I., & Ninaki, M. (1992). Rapid analysis of the exchangeable cations and cation exchange capacity (CEC) to the soil by sacking extraction method. Japanese Journal of Soil Science and Plant Nutrition, 63, 210–215.

    CAS  Google Scholar 

  • Mushak, P., Davis, J. M., Crocetti, A. F., & Grant, L. D. (1989). Prenatal and postnatal effects of low-level lead exposure: Integrated summary of a report to the U.S. Congress on childhood lead poisoning. Environmental Research, 50, 11–36. doi:10.1016/S0013-9351(89)80046-5.

    Article  CAS  Google Scholar 

  • Pardo, R., Barrado, E., Tascon, M. L., & Vazquez, M. D. (1989). Adquisicion y tratamiento de datos polarograficos. Aplicacion a la determinacion de metales pesados enaguas. Quimica Analitica, 8, 121–129.

    Google Scholar 

  • Rahmani, H. R. (1995). Contamination of soil by lead due to vehicles on some high ways of Iran. Soil Science thesis, Isfahan University.

  • Ramses, V. R., Martine, L., & Willy, B. (1999). The mobilization potential of trace metals in aquatic sediments as a tool for sediment quality classification. Environmental Science & Policy, 2, 75–86. doi:10.1016/S1462-9011(98)00044-6.

    Article  Google Scholar 

  • Rios-Arana, J. V., Walsh, E. J., & Gardea-Torresdey, J. L. (2003). Assessment of arsenic and heavy metal concentrations in water and sediments of the Rio Grande at El Paso–Juarez metroplex region. Environment International, 29, 957–971. doi:10.1016/S0160-4120(03)00080-1.

    Article  CAS  Google Scholar 

  • Rodriguez Martin, J. A., Lopez Arias, M., & Grau Corbi, J. M. (2006). Heavy metal contents in the agricultural top soil in the Ebro basin (Spain), application of the multivariate geostatistical methods to study spatial variations. Environmental Pollution, 144, 1001–1012. doi:10.1016/j.envpol.2006.01.045.

    Article  CAS  Google Scholar 

  • Sawyer, E. W. (1986). The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico Metasedimentary Belt, superior Province, Canada. Chemical Geology, 55, 77–95. doi:10.1016/0009-2541(86)90129-4.

    Article  CAS  Google Scholar 

  • Singh, A. K., Hasnain, S. I., & Banerjee, D. K. (1999). Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—a tributary of the lower Ganga India. Environmental Geology, 39, 90–98. doi:10.1007/s002540050439.

    Article  CAS  Google Scholar 

  • Soares, H. M. V. M., Boaventura, R. A. R., Machado, A. A. S. C., & Silva, J. C. G. (1999). Sediment as monitors of heavy metal contamination in the Ave river basin (Portugal): Multivariate analysis of data. Environmental Pollution, 105, 311–323. doi:10.1016/S0269-7491(99)00048-2.

    Article  CAS  Google Scholar 

  • Srinivasa Gowd, S., & Govil, P. K. (2008). Distribution of heavy metals in surface water of Ranipet industrial area in Tamil Nadu, India. Environmental Monitoring and Assessment, 136(1–3), 197–207.

    CAS  Google Scholar 

  • Subramanian, V., & Datta Dilip, K. (1998). Distribution and fractionation of heavy metals in the surface sediment of the Gangae–Brahmaputra–Meghna river system in the Bengal basin. Environmental Geology, 36(1–2), 93–101. doi:10.1007/s002540050324.

    Google Scholar 

  • Suyash, K., Shirke, K. D., & Pawar, N. J. (2008). GIS-based colour composites and overlays to delineate heavy metal contamination zones in the shallow alluvial aquifers, Ankaleshwar industrial estate, South Gujarat, India. Environmental Geology, 54, 117–129. doi:10.1007/s00254-007-0799-2.

    Article  CAS  Google Scholar 

  • Wong, S. C. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16. doi:10.1016/j.envpol.2005.09.004.

    Article  CAS  Google Scholar 

  • Yang, H., & Rose, N. L. (2003). Distribution of Hg in the lake sediments across the UK. The Science of the Total Environment, 304, 391–404. doi:10.1016/S0048-9697(02)00584-3.

    Article  CAS  Google Scholar 

  • Yu, K. Y., Tasi, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35(7), 4086–4094. doi:10.1016/S0043-1354(01)00126-9.

    Article  CAS  Google Scholar 

  • Zabetoglou, K., Voutsa, D., & Samara, C. (2002). Toxicity and heavy metal contamination of surficial sediments from the Bay of Thessaloniki (Northwestern Aegean Sea) Greece. Chemosphere, 49, 17–26. doi:10.1016/S0045-6535(02)00194-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Sayadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayadi, M.H., Sayyed, M.R.G. & Kumar, S. Short-term accumulative signatures of heavy metals in river bed sediments in the industrial area, Tehran, Iran. Environ Monit Assess 162, 465–473 (2010). https://doi.org/10.1007/s10661-009-0810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0810-3

Keywords

Navigation