Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change

Abstract

This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha−1 which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Adhya TK, Bharati K, Mohanty SR, Ramakrishnan B, Rao VR, Sethunathan N, Wassmann R (2000). Methane emission from rice fields at Cuttack, India. Nutr Cycl and Agroecosyst 58: 95–105

  2. Agami M, Reddy KR (1990) Competition for space between Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. cultured in nutrient-enriched water. Aquat Bot 38:195–208

    Article  Google Scholar 

  3. Ali MA, Sattar MA, Islam MN, Inubushi K (2014) Integrated effects of organic, inorganic and biological amendments on methane emission, soil quality and rice productivity in irrigated paddy ecosystem of Bangladesh: field study of two consecutive rice growing seasons. Plant Soil 378:239–252

    Article  CAS  Google Scholar 

  4. Aminifar J, Ghanbari A (2014) Biological facilitative interactions and their roles on maximize growth and productivity of crops in intercropping systems. Scientia 2:90–95

    Google Scholar 

  5. Aravind P, Prasad MNV, Malec P, Waloszek A, Strzałka K (2009) Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. J Trace Elem Med Biol 23:50–60

    Article  CAS  Google Scholar 

  6. Arora A, Saxena S (2005) Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents. Biomass Bioenergy 29:60–64

    Article  CAS  Google Scholar 

  7. Ashraf H, Matto FA, Ganai AM, Reshi IM, Sheikh FA (2015) Effect of replacement of mustard oil cake with Azolla (Azolla pinnata) meal on growth performance of broilers and economics of feeding under temperate conditions. Indian J Anim Nutr 32:325–328

    Google Scholar 

  8. Awodun MA (2008) Effect of Azolla (Azolla species) on physiochemical properties of the soil. World J Agric Sci 4:157–160

    Google Scholar 

  9. Babu S, Prasanna R, Bidyarani N, Singh R (2015) Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools. J Appl Phycol 27:327–338

    Article  CAS  Google Scholar 

  10. Basak B, Pramanik MAH, Rahman MS, Tarafdar SU, Roy BC (2002) Azolla (Azolla pinnata) as a feed ingredient in broiler ration. Int J Poult Sci 1:29–34

    Article  Google Scholar 

  11. Ben-Amotz A (2007) Biofuel and CO2 capture by algae. Algae Biomass Summit, San Francisco, p 15

    Google Scholar 

  12. Bharati K, Mohanty SR, Singh DP, Rao VR, Adhya TK (2000) Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in eastern India. Agric Ecosyst Environ 79:73–83

    Article  CAS  Google Scholar 

  13. Bocchi S, Malgioglio A (2010) Azolla-Anabaena as a biofertilizer for rice paddy fields in the Po Valley, a temperate rice area in Northern Italy. Int J Agron 2010:1-5

  14. Brinkhuis H, Bijl PK (2014) Fern of the future? GeoQ 10:5–6

    Google Scholar 

  15. Brinkhuis H, Schouten S, Collinson ME, Sluijs A, Damstà JS, Dickens GR, Huber M, Cronin TM, Onodera J, Takahashi K (2006) Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441:606–609

    Article  CAS  Google Scholar 

  16. Brouwer P, van der Werf A, Schluepmann H, Reichart G-J, Nierop KG (2015) Lipid yield and composition of Azolla filiculoides and the implications for biodiesel production. Bioenergy Res 1–9. doi:10.1007/s12155-015

  17. Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36:75–99

    Article  Google Scholar 

  18. Carrapiço F (2010) Azolla as a superorganism. Its implication in symbiotic studies. In: Symbioses and stress. Springer, pp. 225–241

  19. Cheng S (2003) Heavy metals in plants and phytoremediation. Environ Sci Pollut Res 10:335–340

    Article  CAS  Google Scholar 

  20. Cheng W, Sakai H, Matsushima M, Yagi K, Hasegawa T (2010) Response of the floating aquatic fern Azolla filiculoides to elevated CO2, temperature, and phosphorus levels. Hydrobiologia 656:5–14

    Article  CAS  Google Scholar 

  21. Cherryl DM, Prasad RMV, Jayalaxmi P (2013) A study on economics of inclusion of Azolla pinnata in swine rations. Int J Agric Sci Vet Med 1:50–56

    Google Scholar 

  22. Cissé M, Vlek PL (2003) Conservation of urea-N by immobilization-remobilization in a rice-Azolla intercrop. Plant Soil 250:95–104

    Article  Google Scholar 

  23. Cohen RR (2006) Use of microbes for cost reduction of metal removal from metals and mining industry waste streams. J Clean Prod 14:1146–1157

    Article  Google Scholar 

  24. Cohen MF, Williams J, Yamasaki H (2002) Biodegradation of diesel fuel by an Azolla-derived bacterial consortium. J Environ Sci Health A 37:1593–1606

    Article  Google Scholar 

  25. Cohen-Shoel N, Ilzycer D, Gilath I, Tel-Or E (2002) The involvement of pectin in Sr2+ biosorption by Azolla. Water Air Soil Pollut 135:195–205

    Article  CAS  Google Scholar 

  26. Cole CV, Duxbury J, Freney J, Heinemeyer O, Minami K, Mosier A, Paustian K, Rosenberg N, Sampson N, Sauerbeck D (1997) Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr Cycl Agroecosyst 49:221–228

    Article  CAS  Google Scholar 

  27. Dawson JJ, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190

    Article  CAS  Google Scholar 

  28. De Macale MA, Vlek PL (2004) The role of Azolla cover in improving the nitrogen use efficiency of lowland rice. Plant Soil 263:311–321

    Article  Google Scholar 

  29. Devendra C, Leng RA (2011) Feed resources for animals in Asia: issues, strategies for use, intensification and integration for increased productivity. Asian-Australas J Anim Sci 24:303–321

    Article  Google Scholar 

  30. Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol Environ Saf 72:1790–1797

    Article  CAS  Google Scholar 

  31. Edema NE, Okoloko EG, Agbogidi OM (2010) Physical and ionic characteristics in water soluble fraction (WSF) of Olomoro well-head crude oil before and after exposure to Azolla Africana Desv. Afr J Biotechnol 7:3540

  32. Elifantz H, Tel-Or E (2002) Heavy metal biosorption by plant biomass of the macrophyte Ludwigia stolonifera. Water Air Soil Pollut 141:207–218

    Article  CAS  Google Scholar 

  33. Esiobu N, Van Hove C (1992) The sustenance of tropical agriculture with multipurpose Azolla. In: Biological Nitrogen Fixation and Sustainability of Tropical Agriculture, Ibadan, Nigeria, pp 49–53

  34. Fasakin EA (1999) Nutrient quality of leaf protein concentrates produced from water fern (Azolla africana Desv) and duckweed (Spirodela polyrrhiza L. Schleiden). Bioresour Technol 69:185–187

    Article  CAS  Google Scholar 

  35. Flinn JC, Denning GL (1989) Agroeconomic opportunities in rice-based farming systems research. In: Rice Farming Systems: New Directions: Proceedings of an International Symposium 31 January–3 February 1987, Rice Research and Training Center, Intl Rice Research Inst, Sakha, Egypt, p. 239

  36. Forni C, Patrizi C, Migliore C (2006) Floating aquatic macrophytes as a decontamination tool for antimicrobial drugs. Soil Water Pollut Monit Prot Rem: 467–477. doi:10.1007/978-1-4020-4728-2_30

  37. Gaind S, Singh YV (2015) Soil organic phosphorus fractions in response to long-term fertilization with composted manures under rice wheat cropping system. J Plant Nutr. doi:10.1080/01904167.2015.1086795

  38. Gangadhar B, Sridhar N, Saurabh S, Raghavendra CH, Hemaprasanth KP, Raghunath MR, Jayasankar P, González-Redondo P (2015) Effect of Azolla-incorporated diets on the growth and survival of Labeo fimbriatus during fry-to-fingerling rearing. Cogent Food Agricult 1:1055539

    Article  Google Scholar 

  39. Gollany H, Stott D, Franzluebbers A, Johnson J (2015) Know your community: soil carbon and greenhouse gas emissions. Crops Soils Agron News 60:25

    Google Scholar 

  40. Hamdi YA (1982) Application of nitrogen-fixing systems in soil improvement and management. Food Agric Org

  41. Houghton JT (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  42. Jafari N, Senobari Z, Pathak RK (2010) Biotechnological potential of Azolla filiculoides, Azolla microphylla and Azolla pinnata for biosorption of Pb(II), Mn(II), Cu (II) and Zn(II). Ecol Environ Conserv 16:443–449

    CAS  Google Scholar 

  43. Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Agric Ecosyst Environ 104:399–417

    Article  CAS  Google Scholar 

  44. Jeyapandiyan N, Lakshmanan A (2014) Influence of Azolla and blue green algae in residual nitrogen and uptake in different rice cultivation systems. Trends in Biosci 7:1504–1506

    Google Scholar 

  45. Joshi LN, Rana A, Shivay YS (2012) Evaluating the potential of rhizo-cyanobacteria as inoculants for rice and wheat. J Agric Technol 8:157–171

    Google Scholar 

  46. Kangmin L (1988) Rice-fish culture in China: a review. Aquaculture 71:173–186

    Article  Google Scholar 

  47. Kanoun-Boulé M, Vicente JA, Nabais C, Prasad MNV, Freitas H (2009) Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol 91:1–9

    Article  Google Scholar 

  48. Kern MA, Vlek PL, für Entwicklungsforschung Z (2007) Azolla as a technology to improve the nitrogen use efficiency of lowland rice. Agric Rural Dev 2:57–59

    Google Scholar 

  49. Kondo M, Kobayashi M, Takahashi E (1989) Effect of phosphorus on Azolla and its utilization in rice culture in Niger. Plant Soil 120:165–170

    Article  CAS  Google Scholar 

  50. Li YK, Li B, Guo WZ, Wu XP (2015) Effects of nitrogen application on soil nitrification and denitrification rates and N2O emissions in Greenhouse. J Agric Sci Technol 17:519–530

  51. Lu J, Li X (2006) Review of rice–fish-farming systems in China—one of the globally important ingenious agricultural heritage systems (GIAHS). Aquaculture 260:106–113

    Article  Google Scholar 

  52. Mahapatra BS, Sharma GL (1989) Integrated management of Sesbania, Azolla and urea nitrogen in lowland rice under a rice-wheat cropping system. J Agric Sci 113:203–206

    Article  Google Scholar 

  53. Mandal B, Vlek PLG, Mandal LN (1999) Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biol Fertil Soils 28:329–342

    Article  CAS  Google Scholar 

  54. Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  55. McConnachie AJ, De Wit MP, Hill MP, Byrne MJ (2003) Economic evaluation of the successful biological control of Azolla filiculoides in South Africa. Biol Control 28:25–32

  56. McLaughlin NB, Hiba A, Wall GJ, King DJ (2000) Comparison of energy inputs for inorganic fertilizer and manure based corn production. Can Agric Eng 42:9–18

    Google Scholar 

  57. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O (1998) Closing the global N 2 O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    Article  CAS  Google Scholar 

  58. Mosier A, Syers JK, Freney JR (2013) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press

  59. Mufarrege MM, Hadad HR, Maine MA (2010) Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Arch Environ Contam Toxicol 58:53–61

    Article  CAS  Google Scholar 

  60. Munasinghe JU, Dilhan M, Sundarabarathy TV (2010) Utilization of aquatic plants: a method to enhance the productivity of water in seasonal tanks in the Anuradhapura District. In: Proceedings of the national conference on water, food security and climate change in Sri Lanka, BMICH, Colombo, Sri Lanka, 9–11 June 2009, vol 1. Irrigation for Food Security, Iwmi, p 23

    Google Scholar 

  61. Nuraisyah S (2002) Use of Azolla compost to growth and yield of mungbean (Vigna radiata L.) on various salinity level. Agrivita

  62. Ortiz-Marquez JCF, Do Nascimento M, Curatti L (2014) Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metab Eng 23:154–164

    Article  CAS  Google Scholar 

  63. Pabby A, Prasanna R, Singh PK (2003) Azolla-Anabaena symbiosis-from traditional agriculture to biotechnology. Indian J Biotechnol 2:26–37

    Google Scholar 

  64. Padmesh TVN, Vijayaraghavan K, Sekaran G, Velan M (2005) Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides. J Hazard Mater 125:121–129

    Article  CAS  Google Scholar 

  65. Panigrahi S, Choudhury D, Sahoo JK, Das SS, Rath RK (2014) Effect of dietary supplementation of Azolla on growth and survibility of Labeo rohita fingerlings. Asian J Anim Sci 9:33–37

    Google Scholar 

  66. Petruccelli R, Bati CB, Carlozzi P, Padovani G, Vignozzi N, Bartolini G (2015) Use of Azolla as a growing medium component in the nursery production of olive trees. Int J Basic Appl Sci 4:333–339

    Article  Google Scholar 

  67. Phong LT, Stoorvogel JJ, Van Mensvoort MEF, Udo HMJ (2011) Modeling the soil nutrient balance of integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam. Nutr Cycl Agroecosyst 90:33–49

    Article  CAS  Google Scholar 

  68. Pillai PK, Premalatha S, Rajamony S (2005) Azolla: a sustainable feed for livestock, vol 21. LEISA, Leusden, p 26

    Google Scholar 

  69. Pittelkow CM, Fischer AJ, Moechnig MJ, Hill JE, Koffler KB, Mutters RG, Greer CA, Cho YS, Van Kessel C, Linquist BA (2012) Agronomic productivity and nitrogen requirements of alternative tillage and crop establishment systems for improved weed control in direct-seeded rice. Field Crop Res 130:128–137

    Article  Google Scholar 

  70. Prasanna R, Kumar V, Kumar S, Kumar Yadav A, Tripathi U, Kumar Singh A, Jain MC, Gupta P, Singh PK, Sethunathan N (2002) Methane production in rice soil is inhibited by cyanobacteria. Microbiol Res 157:1–6

    Article  Google Scholar 

  71. Rai PK (2007) Wastewater management through biomass of Azolla pinnata: an eco-sustainable approach. AMBIO J Hum Environ 36:426–428

    Article  CAS  Google Scholar 

  72. Rai PK (2008) Technical note: Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediation 10:430–439

    Article  CAS  Google Scholar 

  73. Raja W, Rathaur P, John SA, Ramteke PW (2012) Azolla: an aquatic pteridophyte with great potential. Int J Res Biol Sci 2:68–72

    Google Scholar 

  74. Rana A, Kabi SR, Verma S, Adak A, Pal M, Shivay YS, Prasanna R, Nain L (2015) Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro-and micronutrients in grains in rice–wheat cropping sequence. Cogent Food Agric 1:1037379

    Article  Google Scholar 

  75. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  76. Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416

    Article  CAS  Google Scholar 

  77. Ren L, Su S, Yang X, Xu Y, Huang Q, Shen Q (2008) Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biol Biochem 40:834–844

    Article  CAS  Google Scholar 

  78. Sachdeva S, Sharma A (2012) Azolla: role in phytoremediation of heavy metals. Int J Eng Sci 1:2277–9698

    Google Scholar 

  79. Sadeghi Pasvisheh R, Zarkami R, Sabetraftar K, Van Damme P (2013) A review of some ecological factors affecting the growth of Azolla spp. Caspian J Environ Sci 11:65–76

    Google Scholar 

  80. Sahoo DK, Kar RN, Das RP (1992) Bioaccumulation of heavy metal ions by Bacillus circulans. Bioresour Technol 41:177–179

    Article  CAS  Google Scholar 

  81. Saikia N, Sapcota D, Hazarika R (2014) Effect of feeding Azolla (Azolla pinnata) meal to broilers: a field study in Assam. Indian J Poult Sci 49:113–114

    Google Scholar 

  82. Schor-Fumbarov T, Goldsbrough PB, Adam Z, Tel-Or E (2005) Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta 223:69–76

    Article  CAS  Google Scholar 

  83. Schutz H, Schroder P, Rennenberg H (1991) Role of plants in regulating the methane flux to the atmosphere. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic, San Diego, pp 29–63

    Google Scholar 

  84. Sela M, Garty J, TEL‐OR E (1989) The accumulation and the effect of heavy metals on the water fern Azolla filiculoides. New Phytol 112:7–12

    Article  CAS  Google Scholar 

  85. Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51:618–634

    Article  CAS  Google Scholar 

  86. Shang DH, Wu H, Chen XP, Gu RS (1987) The cultivation of Azolla filiculoides for the reclamation and utilization of heavy saline soils. In: Azolla Utilization. IRRI, Los Banos, Philipines, 971-1004

  87. Shanmugasundaram VS, Balusamy M (1994) Rice-fish-azolla farming systems for low-lying rice fields. In: 3. Asian Farming Systems Symposium, Manila (Philippines), AGRIS

  88. Shao L, Wang J, Yan J, Pang X, Wang R, Liang H, Cheng Y (2011) Research and application of integrated cultivation technology for pollution free cucumber production with biogas dregs [J]. J Shanxi Agric Sci 10:012

    Google Scholar 

  89. Shi DJ, Hall DO (1988) The Azolla-Anabaena association: historical perspective, symbiosis and energy metabolism. Bot Rev 54:353–386

    Article  Google Scholar 

  90. Sholkamy EN, El-Komy HM, Ali HM (2015) Enhancement of soybean (Glycine max L.) growth by biofertilizers of Nostoc muscorum and Nostoc rivulare. Pak J Bot 47:1199–1204

    Google Scholar 

  91. Singh PK, Panigrahi BC, Satapathy KB (1981) Comparative efficiency of Azolla, blue-green algae and other organic manures in relation to N and P availability in a flooded rice soil. Plant Soil 62:35–44

    Article  Google Scholar 

  92. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363:789–813

    Article  CAS  Google Scholar 

  93. Subedi P, Shrestha J (2015) Azarian Journal of Agriculture

  94. Sujatha T, Udhayakumari D, Kundu A, Jeyakumar S, Sundar J, Kundu MS (2013) Utilization of raw Azolla as a natural feed additive for sustainable production in Nicobari Fowl. Anim Sci 7

  95. Surenthiran S, Loganathan P (2012) Carbon sequestration of Azolla and soil nitrogen mineralization. In: Proceedings of International Forestry and Environment Symposium

  96. Sutton DL, Ornes WH (1975) Phosphorus removal from static sewage effluent using duckweed. J Environ Qual 4:367–370

    Article  CAS  Google Scholar 

  97. Tan C, Li G, Lu X-Q, Chen Z (2010) Biosorption of basic orange using dried A. filiculoides. Ecol Eng 36:1333–1340

    Article  Google Scholar 

  98. Tekle-Haimanot A, Doku EV (1995) Comparison of Azolla mexicana and N and P fertilization on paddy taro (Colocasia esculenta) yield. Trop Agric Lond Trinidad 72:70

    Google Scholar 

  99. Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Does organic farming reduce environmental impacts?–a meta-analysis of European research. J Environ Manag 112:309–320

    Article  CAS  Google Scholar 

  100. Van Hove C, F and A.O. of the U Nations (1989) Azolla and its multiple uses with emphasis on Africa. FAO Rome, Italy

    Google Scholar 

  101. Veluci RM, Neher DA, Weicht TR (2006) Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb Ecol 51:189–196

    Article  CAS  Google Scholar 

  102. Waddell LM, Moore TC (2008) Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate. Paleoceanography 23:PA1S12

    Article  Google Scholar 

  103. Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–26

    Article  Google Scholar 

  104. Wagner SC (2011) Biological nitrogen fixation. Nat Educ Knowl 2:14

    Google Scholar 

  105. Xie J, Wu X, Tang J, Zhang J, Chen X (2010) Chemical fertilizer reduction and soil fertility maintenance in rice-fish coculture system. Front Agric China 4:422–429

    Article  Google Scholar 

  106. Ying Z, Boeckx P, Chen GX, Cleemput O (2000) Influence of Azolla on CH 4 emission from rice fields. In: Methane emissions from major rice ecosystems in Asia 58: 321–326

  107. Youssouf A, Aliou S, Daouda M, Emile DF, Jean-Claude M (2012) Evaluation of nitrogen and phosphorus wastes produced by Nile Tilapia (Oreochromis niloticus L.) fed Azolla-diets in earthen ponds. J Environ Prot 2012

  108. Zhao Z, Yue Y, Sha Z, Li C, Deng J, Zhang H, Gao M, Cao L (2015) Assessing impacts of alternative fertilizer management practices on both nitrogen loading and greenhouse gas emissions in rice cultivation. Atmos Environ 119:393–401

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This manuscript is part of the institute funded project “Greenhouse gas emission from composting systems and characterization of GHG regulating microbes”. We are grateful to our senior colleagues for their suggestion in framing the manuscript. We acknowledge two anonymous reviewers for their valuable suggestions in improving the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Santosh Ranjan Mohanty.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest in the order of authorship.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kollah, B., Patra, A.K. & Mohanty, S.R. Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res 23, 4358–4369 (2016). https://doi.org/10.1007/s11356-015-5857-9

Download citation

Keywords

  • Azolla
  • Agriculture
  • Environment
  • Bioremediation
  • Greenhouse gasses
  • Climate change