Skip to main content

Freshwater Blue–Green Algae: A Potential Candidate for Sustainable Agriculture and Environment for the Welfare of Future Planet Earth

  • Chapter
  • First Online:
Current Status of Fresh Water Microbiology

Abstract

Different types of microorganisms are known to exist in freshwater habitats. These microbes function similarly to the microorganisms found in soil and air. Freshwater, brackish, marine and terrestrial cyanobacteria (blue–green algae [BGA]) are a diverse group of prokaryotes and are also the most successful and oldest life forms on the planet. They play an important role in maintaining and improving soil fertility, increasing plant growth and yield as a natural biofertilisers, nutrient cycling, nitrogen (N2) fixation and environmental protection. Cyanobacteria demonstrate the potential for effectively converting light energy into chemical energy. The aim of this chapter is to provide valuable information about the potential role of freshwater cyanobacteria in solving the agricultural and environmental problems on the planet earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M (2019) Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol 39(8):981–998

    Article  PubMed  Google Scholar 

  • Al-Thawadi S (2018) Public perception of algal consumption as an alternative food in the Kingdom of Bahrain. Arab J Basic Appl Sci 25(1):1–12

    Article  Google Scholar 

  • Anguselvi V, Masto RE, Mukherjee A, Singh PK (2019) CO2 capture for industries by algae. In: Algae. IntechOpen, London

    Google Scholar 

  • Appel K, Munoz E, Navarrete C, Cruz-Teno C, Biller A, Thiemann E (2018) Immunomodulatory and inhibitory effect of Immulina®, and Immunloges® in the Ig-E mediated activation of RBL-2H3 cells. A new role in allergic inflammatory responses. Plan Theory 7(1):13

    Google Scholar 

  • Awasthi A, Singh MDP (2021) Cyanobacteria: a source of bio fertilizers for sustainable agriculture. Int J Mod Agric 10(2):4117–4122

    Google Scholar 

  • Baloch GN, Tariq S, Ehteshamul-Haque S, Athar M, Sultana V, Ara J (2013) Management of root diseases of eggplant and watermelon with the application of asafoetida and seaweeds. J Appl Bot Food Qual 86(1):138–142

    Google Scholar 

  • Chamizo S, Rodríguez-Caballero E, Cantón Y, De Philippis R (2018) Soil inoculation with cyanobacteria: reviewing its’ potential for agriculture sustainability in drylands. Agric Res Technol 18(556046):10–19080

    Google Scholar 

  • Chanda MJ, Merghoub N, El Arroussi H (2019) Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? World J Microbiol Biotechnol 35(11):1–10

    Article  Google Scholar 

  • Cheah WY, Show PL, Chang JS, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresources 184:190

    Article  Google Scholar 

  • Chittora D, Meena M, Barupal T, Swapnil P, Sharma K (2020) Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophys Rep 22:100737

    PubMed  PubMed Central  Google Scholar 

  • Cremona F, Öglü B, McCarthy MJ, Newell SE, Nõges P, Nõges T (2022) Nitrate as a predictor of cyanobacteria biomass in eutrophic lakes in a climate change context. Sci Total Environ 818:151807

    Article  PubMed  Google Scholar 

  • Cuellar-Bermudez SP, Aleman-Nava GS, Chandra R, Garcia-Perez JS, Contreras-Angulo JR, Markou G et al (2017) Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res 24:438–449

    Article  Google Scholar 

  • Cui H, Zhu X, Zhu Y, Huang Y, Chen B (2022) Ecotoxicological effects of DBPs on freshwater phytoplankton communities in co-culture systems. J Hazard Mater 421:126679

    Article  PubMed  Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13(4):293–299

    Article  Google Scholar 

  • Devi S, Rani N, Sagar A (2021) Bioreclamatory studies on salt affected soil by using cyanobacterial biofertilizers. Plant Arch 21(2):416–422

    Article  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19(3):235–240

    Article  PubMed  Google Scholar 

  • Erratt K, Creed IF, Favot EJ, Todoran I, Tai V, Smol JP, Trick CG (2022) Paleolimnological evidence reveals climate-related preeminence of cyanobacteria in a temperate meromictic lake. Can J Fish Aquat Sci 79(4):558–565

    Article  Google Scholar 

  • Farid R, Mutale-Joan C, Redouane B, Mernissi Najib EL, Abderahime A, Laila S, Hicham ELA (2019) Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum. Appl Biochem Biotechnol 188(1):225–240

    Article  PubMed  Google Scholar 

  • Gayathri R, Mahboob S, Govindarajan M, Al-Ghanim KA, Ahmed Z, Al-Mulhm N et al (2021) A review on biological carbon sequestration: a sustainable solution for a cleaner air environment, less pollution and lower health risks. J King Saud Univ Sci 33(2):101282

    Article  Google Scholar 

  • Gonçalves AL (2021) The use of microalgae and cyanobacteria in the improvement of agricultural practices: a review on their biofertilising, biostimulating and biopesticide roles. Appl Sci 11(2):871

    Article  Google Scholar 

  • Gr S, Yadav RK, Chatrath A, Gerard M, Tripathi K, Govindsamy V, Abraham G (2021) Perspectives on the potential application of cyanobacteria in the alleviation of drought and salinity stress in crop plants. J Appl Phycol:1–18

    Google Scholar 

  • Guha Thakurta S, Aakula M, Chakrabarty J, Dutta S (2018) Bioremediation of phenol from synthetic and real wastewater using Leptolyngbya sp.: a comparison and assessment of lipid production. 3. Biotech 8(4):1–10

    Google Scholar 

  • Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, Chang JS (2014) Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour Technol 152:275–282

    Article  PubMed  Google Scholar 

  • Hofer U (2018) Climate change boosts cyanobacteria. Nat Rev Microbiol 16:122–123

    Article  PubMed  Google Scholar 

  • Hsueh HT, Li WJ, Chen HH, Chu H (2009) Carbon bio-fixation by photosynthesis of Thermo synechococcus sp. CL-1 and Nannochloropsis oculta. J Photochem Photobiol B Biol 95(1):33–39

    Article  Google Scholar 

  • Iniesta-Pallarés M, Álvarez C, Gordillo-Cantón FM, Ramírez-Moncayo C, Alves-Martínez P, Molina-Heredia FP, Mariscal V (2021) Sustaining rice production through biofertilization with N2-fixing cyanobacteria. Appl Sci 11(10):4628

    Article  Google Scholar 

  • Iqbal J, Javed A, Baig MA (2022) Heavy metals removal from dumpsite leachate by algae and cyanobacteria. Biorem J 26(1):31–40

    Article  Google Scholar 

  • Jemilakshmi TV (2021) The inherentpotential of algae for forthcoming future: a comprehensive review. Ann Romanian Soc Cell Biol 5:12452–12462

    Google Scholar 

  • Jha MN, Prasad AN (2006) Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf-life. World J Microbiol Biotechnol 22(1):73–79

    Article  Google Scholar 

  • Kalyanasundaram GT, Ramasamy A, Rakesh S, Subburamu K (2020) Microalgae and cyanobacteria: role and applications in agriculture. In: Applied algal biotechnology. Nova Science, USA, Hauppauge

    Google Scholar 

  • Koul A, Kumar R (2022) A review on diatom flora and cyanobacteria from fresh water. Int J Sci Res (IJSR) 11:34–36

    Google Scholar 

  • Koul B, Yakoob M, Shah MP (2022) Agricultural waste management strategies for environmental sustainability. Environ Res 206:112285

    Article  PubMed  Google Scholar 

  • Kumar M, Prasanna R, Bidyarani N, Babu S, Mishra BK, Kumar A et al (2013) Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Sci Hortic 164:94–101

    Article  Google Scholar 

  • Kumar BNP, Mahaboobi S, Satyam S (2016) Cyanobacteria: a potential natural source for drug discovery and bioremediation. J Ind Pollut Control 32:508–517

    Google Scholar 

  • Li H, Zhao Q, Huang H (2019) Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ 669:258–272

    Article  PubMed  Google Scholar 

  • Maltseva IA, Maltsev YI (2021) Diversity of cyanobacteria and algae in dependence to forest-forming tree species and properties rocks of dump. Int J Environ Sci Technol 18(3):545–560

    Article  Google Scholar 

  • Manjre SD, Deodhar MA (2013) Screening of thermotolerant microalgal species isolated from Western Ghats of Maharashtra, India for CO2 sequestration. J Sustain Energy Environ 4:61–67

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  Google Scholar 

  • Mehdizadeh Allaf M, Peerhossaini H (2022) Cyanobacteria: model microorganisms and beyond. Microorganisms 10(4):696

    Article  PubMed  PubMed Central  Google Scholar 

  • Murali O, Shaik G, Mehar SK (2014) Assessment of bioremediation of cobalt and chromium using cyanobacteria. Ind J Fund Appl Life Sci 4(1):252–255

    Google Scholar 

  • Mutale-Joan C, Sbabou L, Hicham EA (2022) Microalgae and cyanobacteria: how exploiting these microbial resources can address the underlying challenges related to food sources and sustainable agriculture: a review. J Plant Growth Regul 42:1–20

    Article  Google Scholar 

  • Mutoti M, Gumbo J, Jideani AIO (2022) Occurrence of cyanobacteria in water used for food production: a review. Phys Chem Earth Parts A/B/C 125:103101

    Article  Google Scholar 

  • Nisha R, Kiran B, Kaushik A, Kaushik CP (2018) Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity. Int J Environ Sci Technol 15(3):571–580

    Article  Google Scholar 

  • Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46(8):861–875

    Article  Google Scholar 

  • Pan S, Jeevanandam J, Danquah MK (2019) Benefits of algal extracts in sustainable agriculture. In: Grand challenges in algae biotechnology. Springer, Cham, pp 501–534

    Chapter  Google Scholar 

  • Potnis AA, Raghavan PS, Rajaram H (2021) Overview on cyanobacterial exopolysaccharides and biofilms: role in bioremediation. Rev Environ Sci Biotechnol 20(3):781-794.0

    Article  Google Scholar 

  • Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91(3):471–490

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai AN, Singh AK, Syiem MB (2019) Plant growth-promoting abilities in cyanobacteria. In: Cyanobacteria. Academic Press, London, pp 459–476

    Chapter  Google Scholar 

  • Raja R, Hemaiswarya S, Ganesan V, Carvalho IS (2016) Recent developments in therapeutic applications of cyanobacteria. Crit Rev Microbiol 42(3):394–405

    PubMed  Google Scholar 

  • Renuka N, Guldhe A, Prasanna R, Singh P, Bux F (2018) Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 36(4):1255–1273

    Article  PubMed  Google Scholar 

  • Righini H, Francioso O, Martel Quintana A, Roberti R (2022) Cyanobacteria: a natural source for controlling agricultural plant diseases caused by fungi and oomycetes and improving plant growth. Horticulturae 8(1):58

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1):1–61

    Article  Google Scholar 

  • Roncero-Ramos B, Román JR, Acién G, Cantón Y (2022) Towards large scale biocrust restoration: producing an efficient and low-cost inoculum of N-fixing cyanobacteria. Sci Total Environ 848:157704

    Article  PubMed  Google Scholar 

  • Sánchez-Baracaldo P, Bianchini G, Wilson JD, Knoll AH (2022) Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol 30(2):143–157

    Article  PubMed  Google Scholar 

  • Sarsekeyeva F, Zayadan BK, Usserbaeva A, Bedbenov VS, Sinetova MA, Los DA (2015) Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. Photosynth Res 125(1):329–340

    Article  PubMed  Google Scholar 

  • Satpati GG, Pal R (2021) Co-cultivation of Leptolyngbya tenuis (cyanobacteria) and Chlorella ellipsoidea (green alga) for biodiesel production, carbon sequestration, and cadmium accumulation. Curr Microbiol 78(4):1466–1481

    Article  PubMed  Google Scholar 

  • Shinde S, Bhosale M, Tambe T, Sonawane P (2022) Overall review on therapeutic effects of spirulina supplement. Res J Sci Technol 14(2):115–120

    Article  Google Scholar 

  • Singh S, Datta P (2007) Outdoor evaluation of herbicide resistant strains of Anabaena variabilis as biofertilizer for rice plants. Plant Soil 296(1):95–102

    Article  Google Scholar 

  • Singh JS, Pandey VC (2013) Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields. Ecotoxicol Environ Saf 89:43–51

    Article  PubMed  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25(3):73–95. https://doi.org/10.1080/07388550500248498

    Article  PubMed  Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011) Cyanobacteria: an agent of heavy metal removal. Bioremediation of pollutants. IK International Publisher, New Delhi, pp 223–243

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Song X, Zhang J, Peng C, Li D (2021) Replacing nitrogen fertilizer with nitrogen-fixing cyanobacteria reduced nitrogen leaching in red soil paddy fields. Agric Ecosyst Environ 312:107320

    Article  Google Scholar 

  • Swarnalakshmi K, Prasanna R, Kumar A, Pattnaik S, Chakravarty K, Shivay YS, Singh R, Saxena AK (2013) Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur J Soil Biol 55:107–116

    Article  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    Google Scholar 

  • Tiwari R, Para P, Sharma A, Singh R, Upadhyay S (2022) Biofertilizer as prospective input for sustainable agriculture in India: a review. Pharma Innov J 11(3):1811–1816

    Google Scholar 

  • Waterbury JB (2006) The cyanobacteria—isolation, purification and identification. Prokaryotes 4:1053–1073

    Article  Google Scholar 

  • Xie YP, Ho SH, Chen CY, Chen CNN, Liu CC, Ng IS et al (2014) Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy. Biochem Eng J 86:33–40

    Article  Google Scholar 

  • Zahra Z, Choo DH, Lee H, Parveen A (2020) Cyanobacteria: review of current potentials and applications. Environments 7(2):13

    Article  Google Scholar 

  • Zeppernick BN, Wilhelm SW, Bullerjahn GS, Paerl HW (2022) Climate change and the aquatic continuum: a cyanobacterial comeback story: mini review. Environ Microbiol Rep. https://doi.org/10.1111/1758-2229.13122

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, A.K., Gogoi, B., Gurung, R. (2023). Freshwater Blue–Green Algae: A Potential Candidate for Sustainable Agriculture and Environment for the Welfare of Future Planet Earth. In: Soni, R., Suyal, D.C., Morales-Oyervides, L., Sungh Chauhan, J. (eds) Current Status of Fresh Water Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5018-8_19

Download citation

Publish with us

Policies and ethics