Skip to main content

Advertisement

Log in

Response of the floating aquatic fern Azolla filiculoides to elevated CO2, temperature, and phosphorus levels

  • AQUATIC WEEDS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Azolla filiculoides is a floating aquatic fern growing in tropical and temperate freshwater ecosystems. As A. filiculoides has symbiotic nitrogen-fixing cyanobacteria (Anabaena azollae) within its leaf cavities, it is cultivated in rice paddies to improve N availability and suppress other wetland weeds. To understand how C assimilation and N accumulation in A. filiculoides respond to elevated atmospheric carbon dioxide concentration (CO2) in combination with P addition and higher temperatures, we conducted pot experiments during the summer of 2007 and 2008. In 2007, we grew A. filiculoides in pots at two treatment levels of added P fertilizer and at two levels of [CO2] (380 ppm for ambient and 680 ppm for elevated [CO2]) in controlled-environment chambers. In 2008, we grew A. filiculoides in four controlled-environment chambers at two [CO2] levels and two temperature levels (34/26°C (day/night) and 29/21°C). We found that biomass and C assimilation by A. filiculoides were significantly increased by elevated [CO2], temperature, and P level (all P < 0.01), with a significant interaction between elevated [CO2] and added P (P < 0.01). Tissue N content was decreased by elevated [CO2] and increased by higher temperature and P level (all P < 0.01). The acetylene reduction assay showed that the N-fixation activity of A. filiculoides was not significantly different under ambient and elevated [CO2] but was significantly stimulated by P addition. N-fixation activity decreased at higher temperatures (34/26°C), indicating that 29/21°C was more suitable for A. azollae growth. Therefore, we conclude that the N accumulation potential of A. filiculoides under future climate warming depends primarily on the temperature change and P availability, and C assimilation should be increased by elevated [CO2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth, E. A. & S. P. Long, 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE): a meta-analytic review of the responses of photosynthesis canopy properties and plant production to rising CO2. New Phytologist 165: 351–372.

    Article  PubMed  Google Scholar 

  • Biswas, M., S. Sultana, H. Shimozawa & N. Nakagoshi, 2005. Effect of Azolla species on weed emergence in a rice paddy ecosystem. Weed Biology and Management 5: 176–183.

    Article  Google Scholar 

  • Černá, B., E. Rejmánková, J. M. Snyder & H. Šantrůčková, 2009. Heterotrophic nitrogen fixation in oligotrophic tropical marshes: changes after phosphorus addition. Hydrobiologia 627: 55–65.

    Article  Google Scholar 

  • Cheng, W., K. Chander & K. Inubushi, 2000. Effects of elevated CO2 and temperature on microbial biomass nitrogen and nitrogen mineralization in submerged soil microcosms. Soil Microorganisms 54: 51–59.

    Google Scholar 

  • Cheng, W., K. Inubushi, K. Yagi, H. Sakai & K. Kobayashi, 2001. Effect of elevated CO2 on biological nitrogen fixation, nitrogen mineralization and carbon decomposition in submerged rice soil. Biology and Fertility of Soils 34: 7–13.

    Article  CAS  Google Scholar 

  • Cheng, W., K. Yagi, H. Sakai & K. Kobayashi, 2006. Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: an experiment in controlled-environment chambers. Biogeochemistry 77: 351–373.

    Article  CAS  Google Scholar 

  • Cheng, W., K. Yagi, H. Akiyama, S. Nishimura, S. Sudo, T. Fumoto, T. Hasegawa, A. E. Hartley & J. P. Megonigal, 2007. An empirical model of soil chemical properties that regulate methane production in Japanese rice paddy soils. Journal of Environmental Quality 36: 1920–1925.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, W., H. Sakai, K. Yagi & T. Hasegawa, 2009. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology 149: 51–58.

    Article  Google Scholar 

  • Cotrufo, M. F., P. Ineson & A. Scott, 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 43–54.

    Article  Google Scholar 

  • Idso, S. B., B. A. Kimball, M. G. Anderson & J. R. Mauney, 1987. Effects of atmospheric CO2 enrichment on plant growth: the interactive role of air temperature. Agriculture, Ecosystems & Environment 20: 1–10.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), 2007. The physical science basis: summary for policymakers [available on internet at http://www.ipcc.ch/SPM2feb07.pdf.].

  • Inubushi, K., H. Wada & Y. Takai, 1985. Easily decomposable organic matter in paddy soils: (VI) Kinetics of nitrogen mineralization in submerged soils. Soil Science & Plant Nutrition 31: 563–572.

    CAS  Google Scholar 

  • Kim, S. Y. & H. Kang, 2008. Effects of elevated CO2 on below-ground processes in temperate marsh microcosms. Hydrobiologia 605: 123–130.

    Article  CAS  Google Scholar 

  • Kim, H. Y., M. Lieffering, K. Kobayashi, M. Okada & S. Miura, 2003. Seasonal change in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biology 9: 826–837.

    Article  Google Scholar 

  • Kimball, B. A., K. Kobayashi & M. Bindi, 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77: 293–368.

    Article  Google Scholar 

  • Kobayashi, K., M. Okada, H. Y. Kim, M. Lieffering, S. Miura & T. Hasegawa, 2006. Paddy rice responses to free-air [CO2] enrichment. In Nösberger, J., S. P. Long, R. J. Norby, M. Stitt, G. R. Hendrey & H. Blum (eds), Managed Ecosystems and CO2: Case Studies, Processes, and Perspectives. Ecological Studies, Vol. 187. Springer, Berlin, Heidelberg, New York: 87–104.

  • Kobayashi, J. T., S. M. Thomaz & F. M. Pelicice, 2008. Phosphorus as a limiting factor for Eichhornia crassipes growth in the upper Parana river floodplain. Wetlands 28: 905–913.

    Article  Google Scholar 

  • Lee, T. D., M. G. Tjoclker, P. B. Reich & M. P. Russelle, 2003. Contrasting growth response of an N2-fixing and non-fixing forb to elevated CO2: dependence on soil N supply. Plant and Soil 255: 475–486.

    Article  CAS  Google Scholar 

  • Luo, Y., B. Su, W. S. Currie, J. S. Dukes, A. Finzi, U. Hartwig, B. A. Hungate, R. E. McMurtrie, R. Oren, W. J. Parton, D. E. Pataki, M. R. Shaw, D. R. Zak & C. B. Field, 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54: 731–739.

    Article  Google Scholar 

  • Mandal, B., P. L. G. Vlek & L. N. Mandal, 1999. Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biology and Fertility of Soils 28: 329–342.

    Article  CAS  Google Scholar 

  • Nowak, R. S., D. S. Ellsworth & S. D. Smith, 2004. Functional responses of plants to elevated atmospheric CO2—do photosynthetic and productivity data from FACE experiments support early predictions? Tansley Review. New Phytologist 162: 253–280.

    Article  Google Scholar 

  • Reich, P. B., B. A. Hungate & Y. Luo, 2006. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics 37: 611–633.

    Article  Google Scholar 

  • Saarnio, S., S. Jarvio, T. Saarinen, H. Vasander & J. Silvola, 2003. Minor changes in vegetation and carbon gas balance in a boreal mire under a raised CO2 or NH4NO3 supply. Ecosystems 6: 46–60.

    Article  CAS  Google Scholar 

  • Sakai, H., K. Yagi, K. Kobayashi & S. Kawashima, 2001. Rice carbon balance under elevated CO2. New Phytologist 150: 241–249.

    Article  CAS  Google Scholar 

  • Sakai, H., T. Hasegawa & K. Kobayashi, 2006. Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration. New Phytologist 170: 321–332.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. P. & P. K. Singh, 1988. Symbiotic algal nitrogenase activity and heterocyst frequency in seven Azolla species after phosphorus fertilization. Hydrobiologia 169: 313–318.

    Article  CAS  Google Scholar 

  • Van Groenigen, K. J., J. Six, B. A. Hungate, M. A. De Graaff, N. Van Breemen & C. Van Kessel, 2006. Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America 103: 6571–6574.

    Google Scholar 

  • Vitousek, P. M., K. Cassman, C. Cleveland, T. Crews, C. B. Field, N. B. Grimm, R. W. Howarth, R. Marino, L. Martinelli, E. B. Rastetter & J. I. Sprent, 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57: 1–45.

    Article  Google Scholar 

  • Wagner, G. M., 1997. Azolla: a review of its biology and utilization. The Botanical Review 63: 1–26.

    Article  Google Scholar 

  • Watanabe, I., 2006. Whither Azolla use goes? Regulation by invasive alien species act. Journal of Weed Science and Technology 51: 178–184. (in Japanese).

    Article  CAS  Google Scholar 

  • Watanabe, I. & C. C. Liu, 1992. Improving nitrogen-fixing systems and integrating them into sustainable rice farming. Plant and Soil 141: 57–67.

    Article  CAS  Google Scholar 

  • Yoshida, T. & R. Ancajas, 1971. Nitrogen fixing activity in upland and flooded rice fields. Proceedings of Soil Science Society of America 37: 42–46.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a Grant-in-Aid for Scientific Research C (No. 19580019) from the Japan Society for the Promotion of Science. We thank Dr. Y. Kishida at Okayama University for providing A. filiculoides inocula.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Cheng.

Additional information

Guest editors: A. Pieterse, S. Hellsten, J. Newman, J. Caffrey, F. Ecke, T. Ferreira, B. Gopal, J. Haury, G. Janauer, T. Kairesalo, A. Kanninen, K. Karttunen, J. Sarvala, K. Szoszkiewicz, H. Toivonen, L. Triest, P. Uotila, N. Willby / Aquatic Invasions and Relation to Environmental Changes: Proceedings of the 12th International Symposium on Aquatic Weeds, European Weed Research Society

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Sakai, H., Matsushima, M. et al. Response of the floating aquatic fern Azolla filiculoides to elevated CO2, temperature, and phosphorus levels. Hydrobiologia 656, 5–14 (2010). https://doi.org/10.1007/s10750-010-0441-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0441-2

Keywords

Navigation