Skip to main content
Log in

TheAzolla-Anabaena association: Historical perspective, symbiosis and energy metabolism

  • Interpreting Botanical Progress
  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The heterosporous water-fern genusAzolla is one of the few symbioses with a cyanobacterium in the genusAnabaena. TheAzolla-Anabaena association includes six extant speciesof Azolla, which are widely distributed in relatively placid tropical and/or temperate freshwater environments.

The earliest mention of the plant seems to be in an ancient Chinese dictionary that appeared about 2000 years ago.Azolla was used in about the 11th century in Vietnam. By 1980 renewed interest in this symbiotic association was shown by the demand for a less fossil energy-dependent agricultural technology. The importation of a variety ofA. filiculoides may have been a most significant breakthrough for the improvementof Azolla cultivation in China. The history of research may be divided into three periods and a new biotechnological stageof Azolla research has recently begun.

Each mature dorsal leaf lobe has an ellipsoid cavity which containsAnabaena azollae throughout its development. HeterocystousA. azollae from sixAzolla species share identical and highly specific antigens.Azolla and its endophyte exhibit a coordinated pattern of differentiation and development. Epidermal hair cells of the host are probably interactive with the symbiont. The interior surface of a mature leaf cavity is lined with an envelope and covered by a mucilaginous layer.A. azollae shares the cavity with small populations of the bacteriaPseudomonas andAzotobacter. Endophyte-freeAzolla may rarely occur in nature and can be generated by aseptic techniques.Anabaena azollae can be isolated fromAzolla fronds by gentle pressure and by enzymatic digestion. The free living cultures derived from theAnabaena so obtained differ in some respects, however, from the freshly extracted symbiont, and might better be called the presumptive isolate.

BothAzolla andAnabaena contain specific photosynthetic pigments. The optimum conditions for photosynthesis have been measured.Azolla is a C3 plant and has high net photosynthesis. PSII activity in the symbiont is low. Nitrogenase is localized in the heterocysts of the symbiont and has some advantages compared with free-living cyanobacteria. SymbioticA. azollae has a high frequency of heterocysts. Unidirectional hydrogenase occurs in the symbiont and recycles electrons and ATP. Simultaneous measurements of N2 fixation and photosynthesis show the dependence of nitrogenase on photosynthetically captured radiation for energy by an indirect dependence on CO2 fixation. The host contains most of the total GS and GDH activities, and the symbiont excretes a substantial portion of its newly fixed nitrogen as ammonium. The two partners in the association exhibit a comparable developmental gradient and a mechanism of cooperative integration for their energy metabolism, thus improving the efficiency of solar energy conversion and presenting a unique model for biotechnology.

Sumario

El género acuáticoAzolla es una de las pocas plantas simbióticas cianobacterianas, dentro del géneroAnabaena. El géneroAzolla-Anabaena incluye seis especies bastante bien conocidas, ampliamente distribuidas en zonas tropicales apacibles y en ambientes de aguas templadas.

El data mas antiguo que se tiene de ésta planta parece orginarse de un diccionario chino hace unos 2000 años.Azolla ya se utilizaba en Vietnam por el siglo XI. Para el año 1980 esta asociación simbiótica habia despertado un gran interés, estimulado por la necesidad de reducir la dependencia energética del petróleo en el sector agrario.

La introducción de una variedad deA. filiculoides parece haber sido uno de los pasos mas decisivos en el mejoramiento del cultivo de ésta planta en China. Historicamente el estudio científico de laAzolla puede dividirse en tres fases principales, junto con una reciente etapa de investigatión biotecnológica.

La parte interior de la hoja madura tiene una cavidad elíptica que contieneAnabaena azollae a lo largo de su desarrollo.A. azollae orginaria de seis especies diferentes deAzolla, comparten antigenos idénicos y altamente especializados. La actividad endófica de laAzolla exibe un cierto patron de coordinación y desarrollo. Los pelillos epidérmicos celulares del tronquillo son probablemente interactivos con la simbioses. La parte interior elliptica de la hoja madura está cubierta de una tela mucosa.A. azollae comparte esta cabidad con una población pequeña de bacteriasPseudomonas yAzotobacter. “Endophyte-free”Azolla raramente se da en la naturaleza, pudiendo ser generada por medio de técnicas asépticas. La separación deA. azollae puede otenerse presionando suavemente éstas o por medio de digestión enzimática, y se ha demostrado por medios inmunológicos y patrones de hibridización que estos no están estrechamente relacionados a la simbiosis de la planta.

TantoAzolla comoAnabaena contienen ciertos pigmentos fotosintéticos específicos. Las condiciones óptimas fotosintéticas de laAzolla han sido ya calculadas.Azolla es una planta C3 con alta capacidad fotosintética. La actividad de PSII en la simbiosis es baja. E1 nitrógeno se localiza en areas heterocistas simbióticas, ofreciendo ciertas ventajas comparadas con cianobacteria libre. La simbiosis deA. azollae posee una alta frecuencia heterocista. La hidrogenizacion occurre en la simbiosis, reciclando electrones y ATP. Trabajos realizados simultaneamente para medir la fijación de nitrógeno y de fotosíntesis, muestran la dependencia del nitrógeno en la radiación capturada fotosinteticamente por la energia y una dependencia indirecta en cuanto a la fijación de CO2. La parte troncular contiente la mayor parte de las actividades activas de GS y GDH, mientras que la simbiosis excreta una parte substancial de su nitrógeno nuevamente fijado como amonio. Este acoplamiento exibe un gradiente de desarrollo y un mecanismo de integración conjunto y de cooperación substancial en su metabolismo energético, a fin de mejorar su eficacia en la conversión de energía solar, por lo cual presenta un modelo único para la biotecnología.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Arad, H., A. Keysari, E. Tel-Or &D. Kobiler 1985. A comparison between cell antigens in different isolates ofAnabaena azollae. Symbiosis1: 195–203.

    Google Scholar 

  • Ashton, P. J. 1974. The effect of some environmental factors on the growth ofAzolla filiculoides Lam. Pages 123–138in V. Zinderren & E. M. Bakker, Sr. (eds.), The Orange River, progress report. Institute for Environmental Sciences, Bloemfontein, Orange Free State, South Africa.

    Google Scholar 

  • — &R. D. Walmsley. 1976. The aquatic fernAzolla and itsAnabaena symbiont. Endeavour19: 39–43.

    Google Scholar 

  • Aziz, T. &I. Watanabe. 1983. Influence of nutrients on the growth and mineral composition ofAzolla pinnata R. Br. (Bicol, Philippines). Bangladesh J. Bot.12(2): 166–170.

    Google Scholar 

  • Bai, K.-Z., S.-L. Yu, W.-L. Chen &S.-Y. Yang. 1978. Cultivation of alga-freeAzolla, isolation ofAnabaena azollae and a preliminary attempt at their association. Pages 455–457in Proc. Symposium on Plant Tissue Culture. Academic Press, New York.

    Google Scholar 

  • ———— &C. Cui. 1979. The isolation and culture of separate colonies ofAzolla andAnabaena azollae. Kexue Tongbao24: 644–666.

    Google Scholar 

  • —— &D.-J. Shi 1979. A simple method for thein situ nitrogen measurement ofAzolla imbricata.. Acta Bot. Sin.21: 197–198.

    CAS  Google Scholar 

  • Bailey, I. H. 1949. Manual of cultivated plants, 2nd ed. Macmillan Co., New York.

    Google Scholar 

  • Becking, J. H. 1976. Contributions of plant-algal associations. Pages 556–580in W. E. Newton & C. J. Nyman (eds.), Proceedings of the 1st International Symposium on Nitrogen Fixation, Vol. 2. Washington State University Press, Pullman.

    Google Scholar 

  • —. 1978. Ecology and physiological adaptations ofAnabaena in theAzolla-Anabaena azollae symbiosis. Ecol. Bull. (Stockholm)26: 266–281.

    Google Scholar 

  • -. 1979. Environmental requirement ofAzolla for use in tropical rice production. Pages 345–374in t. Rice Res. Inst, (ed.), Nitrogen and rice. Los Baños, Laguna, Philippines.

  • — &M. Donze. 1981. Pigment distribution and nitrogen fixation inAnabaena azollae. PL Soil61: 203–226.

    CAS  Google Scholar 

  • Benson, L. 1957. Plant classification. Heath & Co., Boston.

    Google Scholar 

  • Black, J. M. 1948. Flora of South Australia, 2nd ed., part 1. South Australian Govt. Printer, Adelaide.

    Google Scholar 

  • Bonnet, A. L. M. 1957. Contribution à l’étude des hydropteridées. III. Recherches surAzolla filiculoides. Rev. Cytol. Biol.18: 1–85.

    Google Scholar 

  • Bortels, H. 1940. Über die Bedeutung des Molybdans für Stickstoffbindende Nostocaceen. Arch. Microbiol.11: 155–186.

    CAS  Google Scholar 

  • Bottomley, W. B. 1920. The effect of organic matter on the growth of various water plants in culture solution. Ann. Bot.34: 353–365.

    CAS  Google Scholar 

  • Brill, W. J. 1977. Biological nitrogen fixation. Sci. Amer.236: 68–81.

    CAS  Google Scholar 

  • Brotonegoro, S. &S. Abdulkadir. 1976. Growth and nitrogen-fixing activity ofAzolla pinnata. Ann. Bogor.6: 69–123.

    Google Scholar 

  • Calvert, H. E., M. K. Pence &G. A. Peters. 1985. Ultrastructure ontogeny of leaf cavity trichomes inAzolla implies a functional role in metabolite exchange. Protoplasma129: 10–27.

    Google Scholar 

  • —,S. K. Perkins &G. A. Peters. 1983. Sporocarp structure in the heterosporous water fernAzolla mexicana Presl. Scanning Electron Microsc.3: 1499–1510.

    Google Scholar 

  • — &G. A. Peters. 1981. TheAzolla-Anabaena azollae relationship. IX. Morphological analysis of leaf cavity hair populations. New Phytol.89: 327–335.

    Google Scholar 

  • Campbell, D. H. 1893. On the development ofAzolla filiculoides Lam. Ann. Bot.7: 155–187.

    Google Scholar 

  • Dao, T. T. & T. Q. Thuyet. 1979. Use ofAzolla in rice production in Vietnam. Pages 395–405in Int. Rice Res. Inst, (ed.), Nitrogen and rice. Los Baños, Laguna, Philippines.

  • de Fiore, M. F. 1984. Effectof Azolla on flooded rice production. Pesqui. Agropecu. Bras.19(3): 387–390.

    Google Scholar 

  • Demalsy, P. 1953. Le sporophyted’Azolla nilotica. Cellule56: 5–60.

    PubMed  CAS  Google Scholar 

  • —. 1958. Nouvelles recherches sur le sporophyted’Azolla. Cellule59: 253–268.

    Google Scholar 

  • Duckett, J. G., R. Toth &S. L. Soni. 1975. An ultrastructural study of theAzolla, Anabaena azollae relationship. New Phytol.75: 111–118.

    Google Scholar 

  • Eichler, H. 1965. Supplement to J. M. Black’s Flora of South Australia. South Australian Govt. Printer, Adelaide.

    Google Scholar 

  • Fjerdingstad, E. 1976.Anabaena variabilis statusazollae Arch. Hydrobiol. Suppl. 49. Algol. Studies17: 377–381.

    Google Scholar 

  • Florenzano, G., W. Balloni, R. Materassi &G. Tozzillo. 1981. Preliminary report on the production of a humo-mineral complex byAzolla in mass culture. Agric. Ital.109: 283–287.

    Google Scholar 

  • Florschütz, G. 1949.Azolla uit het Nederland Palaeoceen en Pleistoceen. Verh. Geol. Mijnbouw Genoot. Ned. Kolon. Ser.14: 191–198.

    Google Scholar 

  • Fogg, G. E., W. D. P. Stewart, P. Fay &A. E. Walsby. 1973. The blue-green algae. Academic Press, London.

    Google Scholar 

  • Franche, C. &G. Cohen-Bazire 1985. The structural nif genes of four symbioticAnabaena azollae show a highly conserved physical arrangement. Pl. Sci.39: 125–131.

    CAS  Google Scholar 

  • Fremy, P. 1930. Les myxophycées de l’Afrique Equatoriale Française. Arch. Bot.3: 373–395.

    Google Scholar 

  • Fritsch, F. E. 1904. Studies on Cyanophyceae. III. Some points in the reproduction ofAnabaena. New Phytol.3: 216–226.

    Google Scholar 

  • Gates, J. E., R. W. Fischer, T. W. Goggin &N. I. Azrolan. 1981. Antigenic differences betweenAnabaena azollae fresh from theAzolla fern leaf cavity and free-living cyanobacteria. Arch. Microbiol.128: 126–129.

    Google Scholar 

  • Geitler, L.. 1925. Cyanophyceae. Page 329in L. Geitler & A. Pascher (eds.), Die Susswasser-Flora. Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Gregor, M. J. F. 1938. Associations with fungi.In F. Verdoorn (ed.), Manual of pteridology. M. Nijhoff. The Hague.

    Google Scholar 

  • Griffith, W.. 1845. OnAzolla andSalvinia. Calcutta J. Nat. Hist.5: 227–232.

    Google Scholar 

  • Grilli, M. 1964. Infrastructure deAnabaena azollae vivente nelle foglioline deAzolla caroliniana Ann. Microbiol. Enzimol.14: 69–90.

    Google Scholar 

  • Gunning, B. E. S. 1978. Age-related and origin-related control of the numbers of plasmodesmata in cell walls of developingAzolla roots. Planta143: 181–190.

    Google Scholar 

  • —. 1980. Spatial and temporal regulations of nucleating sites for arrays of cortical microtubules in root tip cells of the water fernAzolla pinnata. Eur. J. Cell Biol.23: 53–63.

    PubMed  CAS  Google Scholar 

  • —,A. R. Hardham &J. E. Hughes. 1978a. Pre-prophase bands of microtubules in all categories of formative and proliferative cell division inAzolla roots. Planta143: 145–160.

    Google Scholar 

  • ———. 1978b. Evidence for initiation of microtubules in discrete regions of the cell cortex inAzolla root-tip cells, and an hypothesis on the cortical arrays of microtubules. Planta143: 161–179.

    Google Scholar 

  • —,J. E. Hughes &A. R. Hardham 1978c. Formative and proliferative cell divisions, cell differentiation and developmental changes in the meristem ofAzolla roots. Planta143: 121–144.

    Google Scholar 

  • Hall, D. O., D. A. Affolter, M. Breuers, D.-J. Shi, L.-W. Yang & K. K. Rao. 1985. Photobiological production of fuels and chemicals by immobilized algae. Pages 161–185in Ann. Proc. Phytochem. Soc. Eur. 26. Oxford University Press, Oxford.

    Google Scholar 

  • Haselkorn, R.. 1978. Heterocysts. Ann. Rev. Pl. Physiol.29: 319–344.

    CAS  Google Scholar 

  • —,B. Mazur, J. Orr, D. Rice, N. Wood &R. Rippka. 1980. Heterocysts differentiation and nitrogen fixation in cyanobacteria (blue-green algae). Pages 259–278in W. E. Newton & W. H. Orme-Johnson (eds.), Nitrogen fixation. Vol. 2. University Park Press, Baltimore.

    Google Scholar 

  • Herd, Y. R., E. G. Cutter &I. Watanabe. 1985. A light and electroscopic study of microsporogenesis inAzolla microphylla. Proc. R. Soc. Edinb.B86: 53–58.

    Google Scholar 

  • Hermelink, P. &W. Kramer. 1986. The importance of nitrogen fixation of blue-green algae and theAzolla-Anabaena symbiosis for the cultivation of lowland rice. Tropenlandwirt87: 11–18.

    Google Scholar 

  • Hill, D. J.. 1975. The pattern of development ofAnabaena in theAzolla-Anabaena symbiosis. Planta122: 179–184.

    Google Scholar 

  • —. 1977. The role ofAnabaena in theAzolla-Anabaena symbiosis. New Phytol.78: 611–616.

    Google Scholar 

  • Hills, L. V. &B. Gopal. 1967.Azolla primaeva and its phylogenetic significance. Canad. J. Bot.45: 1179–1191.

    Google Scholar 

  • Holst, R. W. 1977. Anthocyanins ofAzolla. Amer. Fern J.67:99–100.

    Google Scholar 

  • — &J. H. Yopp. 1976. Effect of light quantity, osmotic stress, temperature and pH on nitrogen fixation and nitrate reduction by theAzolla-Anabaena symbiosis. PL Physiol.57: 103.

    Google Scholar 

  • Huneke, A.. 1933. Beiträge zur Kenntnis des Symbiose zwischenAzolla undAnabaena. Beitr. Biol. Pflanzen20: 315–341.

    Google Scholar 

  • Institute of Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences. 1975. Cultivation, propagation and utilization ofAzolla. Agricultural Press, Beijing, China.

    Google Scholar 

  • Johnson, G. V., P. A. Mayeux &H. J. Evans. 1966. A cobalt requirement for symbiotic growth ofAzolla filiculoides in the absence of combined nitrogen. PL Physiol.41: 852–855

    CAS  Google Scholar 

  • Kaplan, D., H. E. Calvert &G. A. Peters. 1986. TheAzolla-Anabaena azollae relationship. XII. Nitrogenase activity and phycobiliproteins of the endophyte as a function of leaf age and cell type. PL Physiol.80: 884–890.

    CAS  Google Scholar 

  • — &G. A. Peters. 1981.Azolla-Anabaena azollae relationship. X.15N fixation and transport in main stem axes. New Phytol.89: 337–346.

    CAS  Google Scholar 

  • Kawamatu, S.. 1961. Electron micrographs on the plastids in the roots ofAzolla imbricata. Experientia17: 313–315.

    PubMed  CAS  Google Scholar 

  • —. 1962. Electron microscope observations on the root hair cellof Azolla imbricata Nakai. Cytologia28: 12–20.

    Google Scholar 

  • —. 1965a. Electron microscope observations on the blue-green algae in the leaf ofAzolla imbricata Nakai. Cytologia30: 75–79.

    Google Scholar 

  • —. 1965b. Electron microscope observations on the leaf ofAzolla imbricata Nakai. Cytologia30: 80–87.

    Google Scholar 

  • Kobiler, D., A. Cohen-Sharon &E. Tel-Or. 1981. Recognition between the N2-fixingAnabaena and the water femAzolla. FEBS Lett.133: 157–160.

    CAS  Google Scholar 

  • Konar, R. N. &R. J. Kapoor. 1972. Anatomical studies onAzolla pinnata. Phytomorphology22: 211–223.

    Google Scholar 

  • ——. 1974. Embryologyof Azolla pinnata. Phytomorphology24: 224–261.

    Google Scholar 

  • Kumarasinghe, K. S., F. Zapata, G. Kovacs, D. L. Eskew &S. K. A. Danso. 1986. Evaluation of the availability of Azolla-N and urea-N to rice using15N. PL Soil90: 293–299.

    CAS  Google Scholar 

  • Ladha, J. K., P. Rowell &W. D. P. Stewart. 1978. Effect on 5-hydroxylysine on acetylene reduction and ammonia assimilation in the cyanobacteriumAnabaena cylindricum. Biochem. Biophys. Res. Commun.83: 688–696.

    PubMed  CAS  Google Scholar 

  • — &I. Watanabe. 1982. Antigenic similarity amongAnabaena azollae separated from different species ofAzolla. Biochem. Biophys. Res. Commun.109: 675–682.

    PubMed  CAS  Google Scholar 

  • ——. 1984. Antigenic analysis ofAnabaena azollae and the role of lectin in theAzolla-Anabaena symbiosis. New Phytol.98: 295–300.

    Google Scholar 

  • Lang, N. J. 1965. Electron microscopic study of heterocyst development inAnabaena azollae Strasburger. J. Phycol.1: 127–134.

    Google Scholar 

  • — &B. A. Whitton. 1973. Arrangement and structure of thylakoids. Pages 66–70in N. G. Carr & B. A. Whitton (eds.), The biology of blue-green algae. Blackwell, Oxford.

    Google Scholar 

  • Lawrence, G. H.. 1951. Taxonomy of vascular plants. Macmillan Co., New York.

    Google Scholar 

  • Limberger, A. 1925. Zur Frage der Symbiose vonAnabaena mitAzolla. II. Mitteilun. Akad. Wiss. Wien Math. Naturwiss., K1. Denkschr.34: 1–5.

    Google Scholar 

  • Lin, Y.-X. 1980. Classification ofAzolla and wide use of certain species. Acta Phytotaxon. Sin.18: 450–456.

    Google Scholar 

  • Liu, C.-C., W.-C. Wei &D.-Y. Zheng. 1984. Some advances inAzolla research. Page 57in C. Veeder & W. E. Newton (eds.), Advances in nitrogen fixation research. Martinus Nijhoff, The Hague.

    Google Scholar 

  • Lucas, R. C. &J. G. Duckett. 1980. A cytological study of the male and female sporocarps of the heterosporous fernAzolla filiculoides Lam. New Phytol.85: 409–418.

    Google Scholar 

  • Lumpkin, T. A. 1985. Advances in Chinese research onAzolla (Review). Proc. R. Soc. Edinb.B86: 161–167.

    Google Scholar 

  • — &D. P. Bartholomew. 1986. Predictive models for the growth response of eightAzolla accessions to climatic variables. Crop Sci.26: 107–111.

    Google Scholar 

  • — &D. L. Plucknett. 1980.Azolla: Botany, physiology and use as a green manure. Econ. Bot.34: 111–153.

    CAS  Google Scholar 

  • —— 1982.Azolla as a green manure: Use and management in crop production. Westview Press, Boulder, Colorado.

    Google Scholar 

  • Marsh, A. S. 1914.Azolla in Britain and Europe. J. Bot.52: 209–213.

    Google Scholar 

  • Martin, A. R. H. 1976. Some structures inAzolla megaspores and an anomalous form. Rev. Palaeobot. Palynol.12: 141–169.

    Google Scholar 

  • Meeks, J. C., N. Steinberg, C. M. Joseph, C. S. Enderlin, P. A. Jorgensen &G. A. Peters. 1985. Assimilation of exogenous and dinitrogen-derived13NH4 + byAnabaena azollae separated fromAzolla caroliniana Willd. Arch. Microbiol.142: 229–233.

    CAS  Google Scholar 

  • Melchior, H. &E. Werdermann. 1954. Engler: Syllabus der Pflanzenfamilien, 12th ed. Vol. 1. Gebrüder Borntraeger, Berlin-Nikolassee.

    Google Scholar 

  • Mettenius, G.. 1847. UeberAzolla. Linnaea20: 259–282.

    Google Scholar 

  • Meyen, F. J. F. 1836. Beiträge zur Kenntniss derAzollen. Nova Acta Leopol.18: 507–524.

    Google Scholar 

  • Millbank, J. W. 1974. Associations with blue-green algae. Pages 238–265in A. Quispel (ed.), The biology of nitrogen fixation. Elsevier, New York.

    Google Scholar 

  • Moore, A. W. 1969.Azolla: Biology and agronomic significance. Bot. Rev.35: 17–34.

    CAS  Google Scholar 

  • Newton, J. W. 1976. Photoproduction of molecular hydrogen by a plant-algal symbiotic system. Science191: 559–560.

    PubMed  CAS  Google Scholar 

  • — &J. F. Cavin. 1985. Liberation of ammonia during nitrogen fixation by a facultatively heterotrophic cyanobacterium. Biochim. Biophys. Acta809: 44–50.

    CAS  Google Scholar 

  • — &A. Herman. 1979. Isolation of cyanobacteria from the aquatic fern,Azolla. Arch. Microbiol.120: 161–165.

    Google Scholar 

  • Nickell, L. G. 1958. Physiological studies withAzolla under aseptic conditions. I. Isolation and preliminary growth studies. Amer. Fern J.48: 103–108.

    Google Scholar 

  • Nierzwicki-Bauer, S. A. &R. Haselkorn. 1986. Differences in m-RNA levels inAnabaena living freely or in symbiotic association with Azolla—Investigated using nitrogen-fixation genes as DNA probes. EMBO J.5: 29–35.

    PubMed  CAS  Google Scholar 

  • Oes, A. 1913. Über die Assimilation des freien Stickstoffs durchAzolla. Z. Bot.5: 145–163.

    CAS  Google Scholar 

  • Okoronkwo, N. &C. Van Hove. 1986. Dynamics ofAzolla-Anabaena nitrogenase activity in the presence and absence of combined nitrogen. Microbios49(198): 39–45.

    Google Scholar 

  • Olsen, C. 1972. On biological nitrogen fixation in nature, particularly in blue-green algae. Compt. Rend. Trav. Carlsberg Lab.37(12): 269–283.

    Google Scholar 

  • Orr, J. &R. Haselkorn. 1982. Regulation of glutamine synthetase activity and synthesis in free-living and symbioticAnabaena spp. J. Bacteriol.152: 626–635.

    PubMed  CAS  Google Scholar 

  • Perkins, S. K., G. A. Peters, T. A. Lumpkin &H. E. Calvert. 1985. Scanning electron microscopy of perine architecture as a taxonomic tool in the genusAzolla Lamarck. Scanning Electron Microsc.4: 1719–1734.

    Google Scholar 

  • Peters, G. A. 1975. TheAzolla-Anabaena azollae relationship. III. Studies on metabolic capabilities and a further characterization of the symbiont. Arch. Microbiol.103: 113–122.

    CAS  Google Scholar 

  • —. 1976. Studies on theAzolla-Anabaena azollae symbiosis. Pages 592–610in W. E. Newton & C. J. Nyman (eds.), Proceedings of the 1st International Symposium on Nitrogen Fixation. Vol. 2. Washington State University Press, Pullman.

    Google Scholar 

  • —. 1977. TheAzolla-Anabaena azollae symbiosis. Pages 231–258in A. Hollaender (ed.), Genetic engineering for nitrogen fixation. Plenum, New York.

    Google Scholar 

  • —. 1978. Blue-green algae and algal associations. BioScience28: 580–582.

    Google Scholar 

  • — &H. E. Calvert. 1983. TheAzolla-Anabaena azollae symbiosis. Pages 109–145in L. J. Goff (ed.), Algal symbiosis—A continuum of interaction strategies. Cambridge University Press, New York.

    Google Scholar 

  • ——,D. Kaplan, O. Ito &R. E. Toia, Jr. 1982. TheAzolla-Anabaena symbiosis: Morphology, physiology and use. Israel J. Botany31: 305–323.

    Google Scholar 

  • —,W. R. Evans &R. E. Toia, Jr. 1976.Azolla-Anabaena azollae relationship. IV. Photosynthetically driven, nitrogenase-catalyzed H2 production. PI. Physiol.58: 119–126.

    CAS  Google Scholar 

  • — &O. Ito. 1984. Determining N2 fixation and N input inAzolla growth with and without combined nitrogen sources: Keeping the acetylene reduction assay in the proper perspective. Pages 29–44in W. S. Silver & E. C. Schröder (eds.), Practical application ofAzolla for rice production. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  • ——V. V. S. Tyagi &D. Kaplan. 1981a. Physiological studies on N2-fixingAzolla. Pages 342–362in J. M. Lyons (ed.), Genetic engineering of symbiotic nitrogen and conservation of fixed nitrogen. Plenum, New York.

    Google Scholar 

  • ———B. C. Mayne, D. Kaplan &H. E. Calvert. 1981b. Photosynthesis and N2 fixation in theAzolla-Anabaena symbiosis. Pages 121–124in A. H. Gibson & W. E. Newton (eds.), Current perspectives in nitrogen fixation. Australian Academy of Science, Canberra.

    Google Scholar 

  • — &D. Kaplan. 1981. Soluble carbohydrate pool in theAzolla-anabaena symbiosis. Pl. Physiol.67: 5–37.

    Google Scholar 

  • —— &H. E. Calvert. 1985a. Solar-powered N2 fixation in ferns: TheAzolla-Anabaena symbioses. Proc. R. Soc. Edinb.B86: 169–177.

    Google Scholar 

  • ——J. C. Meeks, K. M. Buzby, B. H. Marsh &J. L. Corbin. 1985b. Aspects of nitrogen and carbon interchange in theAzolla-Anabaena symbiosis. Pages 213–222in P. W. Ludden & J. F. Burns (eds.), Nitrogen fixation and CO2 metabolism. Elsevier Science Publishing Co., New York.

    Google Scholar 

  • B. C. Mayne. 1974a. TheAzolla, Anabaena azollae relationship. I. Initial characterization of the association. Pl. Physiol.53: 813–819.

    CAS  Google Scholar 

  • —. 1974b. TheAzolla, Anabaena azollae relationship. II. Localization of nitrogenase activity as assayed by acetylene reduction. Pl. Physiol.53: 820–824.

    CAS  Google Scholar 

  • --T. B. Ray & R. E. Toia, Jr. 1979. Physiology and biochemistry of theAzolla-Anabaena symbiosis. Pages 325–344in Int. Rice Res. Inst, (ed.), Nitrogen and rice, Los Baños, Laguna, Philippines.

  • —,T. B. Ray, B. C. Mayne &R. E. Toia, Jr. 1980a.Azolla-Anabaena association: Morphological and physiological studies. Pages 293–309in W. E. Newton & W. H. Orme-Johnson (eds.), Nitrogen fixation. Vol. 2, University Park Press, Baltimore.

    Google Scholar 

  • —,R. E. Tola, Jr.,H. E. Calvert &B. H. Marsh. 1986. Lichens toGunnera-With emphasis onAzolla. Pl. Soil90: 17–34.

    Google Scholar 

  • ——,W. R. Evans, D. K. Crist, B. C. Mayne &R. E. Poole. 1980b. Characterization and comparisons of five N2-fixingAzolla-Anabaena associations. I. Optimization of growth conditions for biomass increase and N content in a controlled environment. Plant Cell & Environm.3: 261–269.

    Google Scholar 

  • ——S. A. Lough. 1977.Azolla-Anabaena azollae relationship. V.15N2 fixation, acetylene reduction, and H2 production. Pl. Physiol.59: 1021–1025.

    CAS  Google Scholar 

  • ——D. Raveed &N. J. Levine. 1978.The Azolla-Anabaena azollae relationship. VI. Morphological aspects of the association. New Phytol.80: 583–593.

    Google Scholar 

  • Pieterse, A. J., L. Delange &J. P. van Vliet. 1977. A comparative study ofAzolla in the Netherlands. Acta Bot. Neerl.26: 433–449.

    Google Scholar 

  • Prescott, G. W. 1951. Algae of the western Great Lakes area. Bull. Cranbrook Inst. Sci.31: 513–525.

    Google Scholar 

  • Queva, C.. 1910. L’Azollafiliculoides Lam., étude anatomique. Bull. Soc. Hist. Nat. Autun23: 233–256.

    Google Scholar 

  • Rai, A. N., P. Lindblad &B. Bergman. 1986. Absence of the glutamine-synthetase-linked methylammonium (ammonium)-transport system in the cyanobiont of Cycas-cyanobacterial symbiosis. Planta169: 379–381.

    CAS  Google Scholar 

  • Rao, H. S. 1936. The structure and life-history ofAzolla pinnata R. Brown, with remarks on the fossil history of the Hydropterideae. Proc. India Acad. Sci.2: 175–200.

    Google Scholar 

  • Ray, T. B., B. C. Mayne, R. E. Toia, Jr. &G. A. Peters. 1979.Azolla-Anabaena relationship. VIII. Photosynthetic characterization of the association and individual partners. Pl. Physiol.64:791–795.

    CAS  Google Scholar 

  • —,G. A. Peters, R. E. Toia, Jr. &B. C. Mayne. 1978.Azolla-Anabaena relationship. VII. Distribution of ammonia-assimilating enzymes, protein, and chlorophyll between host and symbiont. Pl. Physiol.62: 463–467.

    CAS  Google Scholar 

  • Rhodes, D. &G. R. Stewart. 1974. A procedure for thein vivo determination of enzyme activity in the higher plant tissue. Planta118: 133–144.

    CAS  Google Scholar 

  • Robins, R. J., D. O. Hall, D.-J. Shi, R. J. Turner &M. J. C. Rhodes. 1986. Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces. FEMS Microbiol. Lett.34: 155–160.

    CAS  Google Scholar 

  • Rodgers, G. A. &W. D. P. Stewart. 1977. The cyanophyte-hepatic symbiosis. I. Morphology and physiology. New Phytol.78: 441–458.

    Google Scholar 

  • Rozen, A., H. Arad, M. Schonfeld &E. Tel-Or. 1986. Fructose supports glycogen accumulation, heterocyst differentiation, N2 fixation and growth of the isolated cyanobiontAnabaena azollae. Arch. Microbiol.145: 187–190.

    CAS  Google Scholar 

  • Ruschel, A. P., J. R. de Freitas &P. M. de Silva. 1987. Hydrogen uptake byAzolla-Anabaena. Pl. Soil97: 79–83.

    CAS  Google Scholar 

  • Schaede, R. 1947. Untersuchungen überAzolla und ihre Symbiose mit Blaualgen. Planta35: 319–330.

    Google Scholar 

  • Sculthorpe, C. D. 1967. The biology of aquatic vascular plants. St. Martin’s Press, New York.

    Google Scholar 

  • Shen, E. Y. 1960.Anabaena azollae and its hostAzolla pinnata. Taiwania7: 1–7.

    Google Scholar 

  • Shi, Ding-Ji. 1981. Studies on photosynthetic characteristicsof Azolla. Acta Phytophysiol. Sin.7: 113–120.

    Google Scholar 

  • —,M. Brouers, D. O. Hall &R. J. Robins. 1987a. The effects of immobilization on the biochemical, physiological and morphological featuresof Anabaena azollae. Planta172: 298–308.

    Google Scholar 

  • — &D. O. Hall. 1988.Azolla and immobilized cyanobacteria (blue-green algae): From traditional agriculture to biotechnology. Plants Today1: 5–12.

    Google Scholar 

  • —— &P. S. Tang. 1987b. Photosynthesis, nitrogen fixation, ammonia photoproduction and structure ofAnabaena azollae immobilized in natural and artificial systems. Pages 641–644in J. Biggens (ed.), Progress in photosynthesis research. Vol. II. Martinus Nijhoff Publisher, Dordrecht, The Netherlands.

    Google Scholar 

  • —,J.-G. Li, Z.-P. Zhong, F.-Z. Wang, L.-P. Zhu &G. A. Peters. 1981. Studies on nitrogen fixation and photosynthesis inAzolla imbricata (Roxb.) Nakai andAzolla filiculoides Lam. Acta Bot. Sin.23: 306–315.

    CAS  Google Scholar 

  • —,S.-Q. Li &Y.-Z. Chang. 1984. Studies on the microstructure and ultrastructure of photosynthetic apparatuses inAzolla. Acta Phytotaxon. Sin.22: 32–37.

    Google Scholar 

  • — &P.-S. Tang. 1982. Photosynthesis, nitrogen fixation, hydrogen evolution and symbiosis inAzolla. Advances PL Physiol. Biochem.1: 46–87 (in Chinese).

    Google Scholar 

  • ——. 1984. The integration and regulation of nitrogen fixation, hydrogen metabolism and photosynthesis inAzolla-Anabaena association. Pages 172–193in Advances in photosynthesis research. Vol. 3. Academic Press, Beijing.

    Google Scholar 

  • —,Q.-H. Wang &X. Li. 1983. Studies on absorption of radiant energy and excitation transfer inAnabaena azollae. Bot. Res.1: 207–214.

    Google Scholar 

  • Shields, L. M. &W. Durrell. 1964. Algae in relation to soil fertility. Bot. Rev.30: 92–128.

    CAS  Google Scholar 

  • Silver, W. S. &E. C. Schröder. 1984. Practical applicationof Azolla for rice production (Proceedings of an International Workshop, Mayaguez, Puerto Rico, November 17–19, 1982). Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht/Boston/Lancaster.

    Google Scholar 

  • Silvester, W. B. 1976. Endophyte adaptation inGunnera-Nostoc symbiosis. Pages 521–538in P. S. Nutman (ed.), Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Simpson, F. B. 1987. The hydrogen reaction of nitrogenase. Physiol. Pl.69: 187–190.

    CAS  Google Scholar 

  • Singh, P. K. 1977.Azolla plants as fertilizer and feed. Indian Farming27: 19–22.

    Google Scholar 

  • —. 1979. Symbiotic algal N2-fixation and crop productivity. Pages 37–65in Annual review of plant science. Vol. 1. Kalyani Publisher, New Delhi.

    Google Scholar 

  • Smith, G. M. 1938. Salviniaceae. Pages 353–362in Cryptogamic botany. Vol. II. Bryophytes and pteridophytes. McGraw-Hill Inc., New York.

    Google Scholar 

  • — 1955. Salviniaceae. Pages 372–381in Cryptogamic botany, Vol. II. Bryophytes and pteridophytes, 2nd. ed. McGraw-Hill, New York.

    Google Scholar 

  • Smith, L. A., S. Hill &M. G. Yates. 1976. Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature262: 209–210.

    PubMed  CAS  Google Scholar 

  • Sprent, J. K. &J. A. Raven. 1985. Evolution of nitrogen-fixing symbioses. Proc. Roy. Soc. Edinburgh85B: 215–237.

    Google Scholar 

  • Stewart, W. D. P. 1977. A botanical ramble among the blue-green algae. Brit. Phycol. J.12: 89–115.

    Google Scholar 

  • —. 1980. Some aspects of structure and function in N2-fixing cyanobacteria. Ann. Rev. Microbiol.34: 497–536.

    CAS  Google Scholar 

  • —. 1982. Nitrogen fixation—Its current relevance and future potential. Israel J. Bot.31: 5–44.

    CAS  Google Scholar 

  • — &G. A. Rodgers. 1977. The cyanophyte-hepatic symbiosis. II. Nitrogen fixation and the interchange of nitrogen and carbon. New Phytol.78: 459–471.

    CAS  Google Scholar 

  • — &P. Rowell. 1986. Biochemistry and physiology of nitrogen fixation with particular emphasis on nitrogen-fixing phototrophs. Pl Soil90: 167–191.

    CAS  Google Scholar 

  • --G. A. Codd & S. K. Apte. 1977. N2 fixation and photosynthesis in photosynthetic prokaryotes. Pages 113–146in D. O. Hall (ed.), Proceedings of the 4th International Congress on Photosynthesis.

  • —— &A. N. Rai. 1980. Symbiotic nitrogen-fixing cyanobacteria. Pages 239–277in W. D. P. Stewart & J. R. Gallon (eds.), Nitrogen fixation (Proceedings of the Phytological Society of Europe Symposium, Sussex, September, 1979). Academic Press, London.

    Google Scholar 

  • ——. 1983. Cyanobacteria—Eucaryotic plant symbioses. Ann. Microbiol. (Inst. Pasteur)134B: 205–228.

    Google Scholar 

  • Strasbruger, E. 1873. UeberAzolla. Hermann Davis, Jena.

    Google Scholar 

  • Subba Rao, N. S. 1982. Biofertilizers in agriculture. Oxford & IBH Publishing Co., New Delhi.

    Google Scholar 

  • Sud, S. R. 1934. A preliminary note on the studyof Azolla pinnata R. Br. J. Indian Bot. Soc.13: 189–196.

    Google Scholar 

  • Sun, J.-S., Z.-Q. Zhu, W.-L. Chen &S.-Q. Li. 1984. Electron microscopic observation of theAzolla-Anabaena azollae relationship. Acta Bot. Sin.26: 343–349.

    Google Scholar 

  • Svenson, H. K. 1944. The new world speciesof Azolla. Amer. Fern J.34: 69–84.

    Google Scholar 

  • Swaminathan, M. S. 1984. Rice. Sci. Amer.250: 63–71.

    Google Scholar 

  • Sweet, A. &L. V. Hills. 1971. A study ofAzolla pinnata R. Brown. Amer. Fern J.61: 1–13.

    Google Scholar 

  • Talley, S. N., B. J. Talley &D. W. Rains. 1977. Nitrogen fixation byAzolla in rice fields. Pages 259–281in A. Hollander (ed.), Genetic engineering in nitrogen fixation. Plenum Publishing Company, New York.

    Google Scholar 

  • Tang, P. S. 1979. Photosynthesis, nitrogen fixation and hydrogen evolution. Advances Biol. Sci.1: 2–6 (in Chinese).

    Google Scholar 

  • -,D.-J. Shi, C.-Z. Hu, F.-Z. Wang & Z.-P. Zhong. 1981. Regulation of energy metabolism (photosynthesis and nitrogen fixation) in blue-green algae. Pages 339–363in Proceedings of the Joint China-U.S. Phycology Symposium, Nov. 15–21, 1981.

  • Tel-Or, E. &T. Sandovsky. 1982. The response of the nitrogen-fixing cyanobacteriumAnabaena azollae to combined nitrogen compounds and sugar. Israel. J. Bot.31: 329–336.

    CAS  Google Scholar 

  • ——D. Kobiler, C. Arad &R. Weinberg. 1983. The unique symbiotic properties ofAnabaena in the water fernAzolla. Pages 303–314in G. C. Papageorgiou & L. Packer (eds.), Photosynthetic prokaryotes: Cell differentiation and function. Elsevier Biomedical, New York.

    Google Scholar 

  • Tilden, J. 1910. Minnesota algae. Page 195in Report of the Survey, Botanic Series VIII. Minneapolis, Minnesota.

  • Toia, R. E., Jr.,D. K. Crist, R. E. Pool, P. E. Bent &G. A. Peters. 1981. Effect of selected pesticides on physiology and composition of 4Azolla species. Pl. Physiol.67(Suppl.):81.

    Google Scholar 

  • —,B. H. Marsh, S. K. Perkins, J. W. McDonald &G. A. Peters. 1985. Sporopollenin content of the spore apparatusof Azolla. Amer. Fern J.75: 38–43.

    Google Scholar 

  • Tung, H. F. &T. C. Shen. 1981. Studies of theAzolla pinnata-Anabaena azollae symbiosis: Growth and nitrogen fixation. New Phytol.87: 743–749.

    CAS  Google Scholar 

  • Tung, H. F. &T. C. Shen. 1985. Studies of theAzolla pinnata-Anabaena azollae symbiosis: Concurrent growth ofAzolla with rice. Aquat. Bot.22: 145–152.

    CAS  Google Scholar 

  • Tuzimura, K., F. Ikeda &K. Tukamoto. 1957. Studies onAzolla with reference to its use as a green manure for rice fields. J. Sci. Soil Manure28: 17–20.

    Google Scholar 

  • Tyagi, V. V. S., B. C. Mayne &G. A. Peters. 1980. Purification and initial characterization of phycobiliproteins from the endophytic cyanobacterium ofAzolla. Arch. Microbiol.128:41–44.

    CAS  Google Scholar 

  • —,T. B. Ray, B. C. Mayne &G. A. Peters. 1981. TheAzolla-Anabaena relationship. XI. Phycobiliproteins in the action spectrum for nitrogenase-catalyzed acetylene reduction. Pl. Physiol.68: 1479–1484.

    CAS  Google Scholar 

  • Uheda, E. 1986. Isolation of hair cells fromAzolla filiculoides var.japonica leaves. Pl. Cell Physiol.27: 1255–1261.

    CAS  Google Scholar 

  • Venkataraman, G. S. 1962. Studies on nitrogen fixation by blue-green algae. III. Nitrogen fixation byAnabaena azollae. Indian J. Agric. Sci.32: 22–24.

    CAS  Google Scholar 

  • Vincenzini, M., M. C. Marheri &C. Sili. 1985. Outdoor mass culture ofAzolla spp.; yields and efficiencies of nitrogen fixation. Pl. Soil86: 57–67.

    CAS  Google Scholar 

  • Vouk, V. &P. Wellisch. 1931. Zur Frage der Stickstoffassimilation einiger symbiontischen Cyanophyceen. Acta Bot. Inst. Bot. Univ. Zagreb6: 66–75.

    Google Scholar 

  • Vu Van Vu, H. W. Wong Fong Sang, J. W. Kijne, K. Planque &R. Kraayenhof. 1986. Effects of temperature, pH and bound nitrogen on photosynthesis and nitrogen fixation ofAzolla pinnata (Xanh, Vietnam) andAzolla fliculoides Lam. Photosynthetica20: 67–73.

    CAS  Google Scholar 

  • Walmsley, R. D., C. M. Breen &E. Kyle. 1973. Aspects of the fern-alga relationship inAzolla filiculoides. Newsl. Limnol. Soc. South Afr.20: 13–21.

    Google Scholar 

  • Watanabe, I. 1978.Azolla and its use in lowland rice culture. Tsuchi Biseibutsu20: 1–10.

    Google Scholar 

  • —. 1982.Azolla-Anabaena symbiosis—Its physiology and use in tropical agriculture. Pages 169–185in Y. R. Dommergues & H. G. Diem (eds.), Microbiology of tropical soils and plant productivity. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague.

    Google Scholar 

  • —. 1984. Use of symbiotic and free-living blue-green algae in rice culture. Outlook Agric.13: 166–172.

    Google Scholar 

  • —. 1986. Nitrogen fixation by non-legumes in tropical agriculture with special reference to wetland rice. PL Soil90: 343–357.

    Google Scholar 

  • —,K.-Z. Bai, N. S. Berja, C. R. Espinas, O. Ito &B. P. R. Subudhi. 1981. TheAzolla-Anabaena complex and its use in rice culture. Int. Rice Res. Inst. Res. Paper Ser. No. 69. The International Rice Research Institute, Los Baños, Laguna, Philippines.

    Google Scholar 

  • —,N. S. Berja &V. B. Alimagno. 1977. Utilization of theAzolla-Anabaena complex as a nitrogen fertilizer for rice. Int. Rice Res. Inst. Res. Paper Ser. No. 11. The International Rice Research Institute, Los Banos, Laguna, Philippines.

    Google Scholar 

  • — &A. A. Roger. 1984. Nitrogen fixation in wetland rice fields. Pages 237–276in N. S. S. Rao (ed.), Current developments in biological nitrogen fixation. Edward Arnold, London.

    Google Scholar 

  • Wierienga, K. T. 1968. A new method for obtaining bacteria-free cultures of blue-green algae. Antonie Leeuwenhoek Ned. Tijdschr. Hyg.34: 54–56.

    Google Scholar 

  • Wildemann, L. 1934. Weitere Beiträge zur Symbiose vonAzolla undAnabaena. Diss. Westfalischen Wilhenis-Universität, Munster, Druckerei Heinr. & J. Lechte.

  • Wu, G.-L., Z.-P. Zhong, K.-Z. Bai, F.-Z. Wang &C. Cui. 1982. The effects of light quality on the growth and developmentof Anabaena azollae. Acta Bot. Sin.24: 40–53.

    Google Scholar 

  • Xu, Y.-L., K.-Z. Bai, S.-L. Yu &C. Cui. 1983. Nitrogenous compounds of the leaf cavity liquid ofAzolla in relation to the symbiosisof Azolla andAnabaena azollae. Acta Bot. Sin.25: 82–86.

    CAS  Google Scholar 

  • Yatozawa, M., N. Tomomatsu, N. Hosada &K. Nunome. 1980. Nitrogen fixation inAzolla-Anabaena symbiosis as affected by mineral nutrient status. Soil Sci. PL Nutr.26: 415–426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, DJ., Hall, D.O. TheAzolla-Anabaena association: Historical perspective, symbiosis and energy metabolism. Bot. Rev 54, 353–386 (1988). https://doi.org/10.1007/BF02858416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858416

Keywords

Navigation