Skip to main content
Log in

Evaluation of the MIDTAL microarray chip for monitoring toxic microalgae in the Orkney Islands, U.K.

  • Molecular tools for monitoring Harmful Algal Blooms
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Harmful or nuisance algal blooms can cause economic damage to fisheries and tourism. Additionally, toxins produced by harmful algae and ingested via contaminated shellfish can be potentially fatal to humans. The seas around the Orkney Islands, UK currently hold a number of toxic algal species which cause shellfishery closures in most years. Extensive and costly monitoring programs are carried out to detect harmful microalgae before they reach action levels. However, the ability to distinguish between toxic and non-toxic strains of some algae is not possible using these methods. The microarrays for the detection of toxic algae (MIDTAL) microarray contains rRNA probes for toxic algal species/strains which have been adapted and optimized for microarray use. In order to investigate the use of the chip for monitoring in the Orkney Islands, samples were collected between 2009 and 2011 from Brings Deep, Scapa Flow, Orkney Islands, UK; RNA was extracted and hybridized with generation 2 and 3.1 of the chip. The data were then compared to cell counts performed under light microscopy and in the case of Alexandrium tamarense to qPCR data targeting the saxitoxin gene and the LSU-rRNA gene. A good agreement between cell numbers and microarray signal was found for A. tamarense, Pseudo-nitzschia sp., Dinophysis sp. (r < 0.5, for all) in addition to this there the chip successfully detected a large bloom of Karenia mikimotoi (r < 0.70) in August and September 2011. Overall, there was good improvement in probe signal between generation 2 and generation 3.1 of the chip with much less variability and more consistent results and better correlation between the probes. The chip performed well for A. tamarense group I signal to cell numbers in calibrations (r > 0.9). However, in field samples, this correlation was slightly lower suggesting interactions between all species in the sample may affect signal. Overall, the chip showed it could identify the presence of target species in field samples although some work is needed to improve the quantitative nature of the chip before it would be suitable for monitoring in the Orkney Islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AFBI (2006a) Standard operating procedure for the collection of water samples for analysis of potential toxin producing phytoplankton cells in compliance with EU reg. 2004/854. http://www.afbini.gov.uk/marine-biotoxins-nrl-phytoplankton-collection-sop-v2.pdf. Accessed 16 May 2012

  • AFBI (2006b) Standard operating procedure for the identification and enumeration of potential toxin-producing phytoplankton species in samples collected from UK coastal waters using the Utermöhl method. http://www.afbini.gov.uk/marine-biotoxins-nrl-phytoplankton-enumeration-sop-v4.pdf. Accessed 16 May 2012

  • Andree KB, Fernandez-Tejedor M, Elandaloussi LM, Quijano-Scheggia S, Sampedro N et al (2011) Quantitative PCR coupled with melt curve analysis for detection of selected Pseudo-nitzschia spp. (Bacillariophyceae) from the Northwestern Mediterranean sea. Appl Environ Microbial 77:1651–1659

    Article  CAS  Google Scholar 

  • Brand LE, Campbell L, Bresnan E (2012) Karenia: the biology and ecology of a toxic genus. Harmful Algae 14(special issue):156–178

    Article  Google Scholar 

  • Brown J, Fernand L, Horsburgh AE, Read JW (2001) Paralytic shellfish poisoning on the east coast of the UK in relation to seasonal density-driven circulation. J Plankton Res 23:105–116

    Article  Google Scholar 

  • Brown L, Bresnan E, Graham J, Lacaze J-P, Turrell EA, Collins C (2010) Distribution, diversity and toxin composition of the genus Alexandrium (Dinophyceae) in Scottish waters. Eur J Phycol 45:375–393

    Article  CAS  Google Scholar 

  • CEFAS (2011) Protocol for the collection of water for the Algal Biotoxin Official Control Monitoring Programme under EU Regulation 854/2004. http://www.cefas.defra.gov.uk/media/506022/protocol%20for%20collection%20of%20water%20e&w.pdf. Accessed 16 May 2012

  • CEFAS (2012) Major milestone reached: animals no longer used in shellfish safety tests. http://www.cefas.defra.gov.uk/news/web-stories/major-milestone-reached-animals-no-longer-used-in-shellfish-safety-tests.aspx. Accessed 24 June 2012

  • Chen Y, Yan T, Yu RC, Zhou MJ (2011) Toxic effects of Karenia mikimotoi extracts on mammalian cells. Chin J Oceanol Limnol 29(4):860–868

    Article  CAS  Google Scholar 

  • Collins C, Graham J, Brown L, Bresnan E, Lacaze J-P, Turrell EA (2009) Identification and toxicity of Alexandrium tamarense (Dinophyceae) in Scottish waters. J Phycol 45:692–703

    Article  Google Scholar 

  • Davidson K, Bresnan E (2009) Shellfish toxicity in UK waters: a threat to human health? Environ Health 8:4. doi:10.1186/1476-069X-8-S1-S12

    Article  Google Scholar 

  • Davidson K, Miller PI, Wilding T, Shutler J, Bresnan E, Kennington K, Swan S (2009a) A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006. Harmful Algae 8:349–361. doi:10.1016/j.hal.2008.07.007

    Article  Google Scholar 

  • Davidson K, Gillibrand P, Wilding T, Miller P, Shutler J (2009b) Predicting the progression of the harmful dinoflagellate Karenia mikimotoi along the Scottish coast and the potential impact for fish farming. Final project report to the Crown Estate. 101pp. ISBN 978-1-906410-06-3. http://www.thecrownestate.co.uk/mrf_aquaculture.htm. Accessed 03 Aug 2012

  • Ebenezer V, Medlin LK, Ki JS (2012) Molecular detection, quantification, and diversity evaluation of microalgae. Mar Biotechnol 14:129–142

    Article  CAS  Google Scholar 

  • EFSA (2009) Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on Marine Biotoxins in Shellfish—summary on regulated marine biotoxins. EFSA J Agric Food Chem 1306:1–23

    Google Scholar 

  • Engell-Sørensen K, Andersen P, Holmstrup KM (2009) Preservation of the invasive ctenophore Mnemiopsis leidyi using acidic Lugol's solution. J Plankton Res 31:917–920

    Article  Google Scholar 

  • Erdner DL, Percy L, Lewis J, Anderson DM (2010) A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments. Deep-Sea Research Part II 57(3–4):279–287

    Google Scholar 

  • Fitzpatrick E, Caron DA, Schnetzer A (2010) Development and environmental application of a genus-specific quantitative PCR approach for Pseudo-nitzschia species. Mar Biol 157:1161–1169

    Article  CAS  Google Scholar 

  • Fraser S, Brown L, Bresnan E (2006) Monitoring programme for toxin producing phytoplankton in Scottish coastal waters April 2004–31 March 2005. Fisheries Research Services Contract Report no. 03/06 www.scotland.gov.uk/Uploads/Documents/Coll0306.pdf

  • Galluzzi L et al (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a dinoflagellate). Appl Environ Microbiol 70:1199–1206

    Article  CAS  Google Scholar 

  • Galluzzi L et al (2010) Analysis of rRNA gene content in the Mediterranean dinoflagellates Alexandrium catenella and Alexandrium taylori: implications for the quantitative real-time PCR-based monitoring methods. J Appl Phycol 22:1–9

    Article  CAS  Google Scholar 

  • Gescher C, Metfies K, Medlin LK (2008) The ALEX CHIP—development of a DNA chip for identification and monitoring of Alexandrium. Harmful Algae 7:485–494

    Article  CAS  Google Scholar 

  • Gescher G, Metfies K, Medlin LK (2010) Microarray hybridization for quantification of microalgae In: Karlson B, Cusack C, Bresnan E (eds) Microscopic and molecular methods for quantitative phytoplankton analysis. IOC Manuals and Guides, no. 50, Intergovernmental Oceanographic Commission of UNESCO, pp 77–86

  • Gilmartin M, Silke J (eds) (2009) Proceedings of the 9th Irish Shellfish Safety Scientific Workshop, Marine Environment and Health Series No. 37

  • Glibert PM, Landsberg JH, Evans JJ, Al-Sarawi MA, Faraj M, Al-Jarallah MA, Haywood A, Ibrahem S, Klesius P, Powell C, Shoemaker C (2001) A fish kill of massive proportion in Kuwait Bay, Arabian Gulf, 2001: the roles of bacterial disease, harmful algae, and eutrophication. Harmful Algae 1:215–231

    Article  Google Scholar 

  • Gowen RJ (1987) Toxic phytoplankton in Scottish coastal waters. Rapp P-v Reun Cons Int Explor Mer 187:89–93

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Hall AJ, Frame ER (2010) Evidence of domoic acid exposure in harbour seals from Scotland: a potential cause of the decline in abundance? Harmful Algae 9(5):489–493

    Article  CAS  Google Scholar 

  • Higman WA, Stone DA, Lewis JM (2001) Sequence comparisons of toxic and non-toxic Alexandrium tamarense (Dinophyceae) isolates from UK waters. Phycologia 40:256–262

    Article  Google Scholar 

  • Hinder SL et al (2011) Toxic marine microalgae and shellfish poisoning in the British Isles: history, review of epidemiology, and future implications. Environ Health: A Global Access Sci Source 10:54

    Google Scholar 

  • Hoagland P, Scatasta S (2006) The economic effects of harmful algal blooms. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 391–401

    Chapter  Google Scholar 

  • Hoagland P, Anderson DM, Kaoru Y, White AW (2002) The economic effects of harmful algal blooms in the United States: estimates, assessment issues, and information needs. Estuaries 25:819–837

    Article  Google Scholar 

  • Jones KJ, Ayres P, Bullock AM, Roberts RJ, Tett P (1982) A red tide of Gyrodinium aureolum in sea lochs of the Firth of Clyde and associated mortality of pond-reared salmon. J Mar Biol Ass UK 62:771–782

    Article  Google Scholar 

  • Kamikawa R, Asai J, Miyahara T, Murata K, Oyama K, Yoshimatsu S, Yoshida T, Sako Y (2006) Application of a real-time PCR assay to a comprehensive method of monitoring harmful algae. Microbes Environ 21:163–173

    Article  Google Scholar 

  • Karlson B, Cusack C, Bresnan E (eds) (2010) Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO, Paris, p 110, IOC Manuals and Guides, no. 55. IOC/2010/MG/55

    Google Scholar 

  • Kegel JU, Del Amo Y, Medlin LK (2012) Introduction to project MIDTAL: its methods and samples from Arcachon Bay, France Environ Sci Pollut Res Int. doi:10.1007/s11356-012-1299-9

  • Leaw CP, Lim PT, Ng BK, Cheah MY, Ahmad A, Usup G (2005) Phylogenetic analysis of Alexandrium species and Pyrodinium bahamense (Dinophyceae) based on theca morphology and nuclear ribosomal gene sequence. Phycologia 44:550–565

    Article  Google Scholar 

  • Lilly EL, Halanych KM, Anderson DM (2007) Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae). J Phycol 43:1329–1338

    Article  CAS  Google Scholar 

  • McNamee SE, Elliot CT, Delahaut P, Campbell K (2012) Multiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples. Environ Sci Pollut Res. doi:10.1007/s11356-012-1329-7

  • Metfies K, Medlin LK (2004) DNA microchips for phytoplankton: the fluorescent wave of the future. Nova Hedw 79:321–327

    Article  Google Scholar 

  • Metfies K, Medlin LK (2008) Feasibility of transferring fluorescent in situ hybridization probes to an 18S rRNA gene Phylochip and mapping of signal intensities. Appl Envir Microbiol 74:2814–2821

    Article  CAS  Google Scholar 

  • Metfies K, Berzano M, Mayer C, Roosken P, Gualerzi C, Medlin LK, Muyzer G (2007) An optimized protocol for the identification of diatoms, flagellated algae and pathogenic protozoa with phylochips. Mol Ecol Notes 7:925–936

    Article  CAS  Google Scholar 

  • Murray SA, Wiese M, Stüken A, Brett S, Kellmann R, Hallegraeff G, Neilan BA (2011) sxtA-Based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters. Appl Environ Microbiol 77:7050–7057

    Article  CAS  Google Scholar 

  • Smayda TJ (2006) Harmful algal bloom communities in scottish coastal waters: relationship to fish farming and regional comparisons—a review. Paper 2006/3. Scottish Executive, Scottish Environmental Protection Agency (SEPA) Online publication. http://www.scotland.gov.uk/Publications/2006/02/03095327. Accessed 14 Aug 2012.

  • Stubbs B, Coates L, Milligan S, Morris S, Higman WA, Algoet M (2008) Biotoxin monitoring programme for England and Wales: 1st April 2007 to 31st March 2008. Shellfish News, CEFAS 26

  • Taylor JD, Berzano M, Percy L, Lewis JM (2013) Preliminary results of the MIDTAL project: a microarray chip to monitor toxic dinoflagellates in the Orkney Islands, UK. In: Bradley L, Lewis JM, Marrett-Davies F (eds) Biological and Geological Perspectives of Dinoflagellates The Micropalaeontological Society, Special Publications. Geological Society, London

  • Tett P, Edwards V (2002) Review of harmful algal blooms in Scottish coastal waters. Report to SEPA, Edinburgh, p 120

    Google Scholar 

  • Töbe K, Ferguson C, Kelly M, Gallacher S, Medlin LK (2001) Seasonal occurrence at a Scottish PSP monitoring site of purportedly toxic bacteria originally isolated from the toxic dinoflagellate genus Alexandrium. Eur J Phycol 36:243–256

    Google Scholar 

  • Touzet N, Davidson K, Pete R, Flanagan K, McCoy GR, Amzil Z, Maher M, Chapelle A, Raine R (2010) Co-occurrence of the West European (Gr. III) and North American (Gr. I)ribotypes of Alexandrium tamarense (Dinophyceae) in Shetland, Scotland. Protist 161:370–384. doi:10.1016/j.protis.2009.12.001

    Article  Google Scholar 

  • Ulrich RM, Casper ET, Campbell L, Richardson B, Heil CA, Paul JH (2010) Detection and quantification of Karenia mikimotoi using real-time nucleic acid sequence-based amplification with internal control RNA (IC-NASBA). Harmful Algae 9(1):116–122

    Article  CAS  Google Scholar 

  • Utermöhl H (1931) Neue Wege in der quantitativen Erfassung des Planktons (mit besonderer Berücksichtigung des Ultraplanktons). Verh Int Ver Theor Angew Limnol 5:567–596

    Google Scholar 

  • Wyatt T, Saborido-Rey F (1993) Biogeography and time-series analysis of British PSP records, 1968–1990. In: Samayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the Sea. Elsevier Science, Amsterdam, pp 73–78

    Google Scholar 

  • Yamasaki Y, Kim D, Matsuyama Y, Oda T, Honjo T (2004) Production of superoxide anion and hydrogen peroxide by the red tide dinoflagellate Karenia mikimotoi. J Biosci Bioeng 97(3):212–215

    CAS  Google Scholar 

  • Yasumoto T, Oshima Y, Yamaguchi M (1978) Occurrence of a new type of shellfish poisoning in the Tohoku district. Bull Japan Soc Sci Fish 44:1249–1255

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dennis Gowland from research relay for carrying out some of the sampling and the other MIDTAL partners. This work was funded by the European Union under the FP7 water framework directive grant agreement number 201724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Lewis.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 25.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J.D., Berzano, M., Percy, L. et al. Evaluation of the MIDTAL microarray chip for monitoring toxic microalgae in the Orkney Islands, U.K.. Environ Sci Pollut Res 20, 6765–6777 (2013). https://doi.org/10.1007/s11356-012-1393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1393-z

Keywords

Navigation