Skip to main content

Advertisement

Log in

Molecular Detection, Quantification, and Diversity Evaluation of Microalgae

  • Review Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

This study reviews the available molecular methods and new high-throughput technologies for their practical use in the molecular detection, quantification, and diversity assessment of microalgae. Molecular methods applied to other groups of organisms can be adopted for microalgal studies because they generally detect universal biomolecules, such as nucleic acids or proteins. These methods are primarily related to species detection and discrimination among various microalgae. Among current molecular methods, some molecular tools are highly valuable for small-scale detection [e.g., single-cell polymerase chain reaction (PCR), quantitative real-time PCR (qPCR), and biosensors], whereas others are more useful for large-scale, high-throughput detection [e.g., terminal restriction length polymorphism, isothermal nucleic acid sequence-based amplification, loop-mediated isothermal amplification, microarray, and next generation sequencing (NGS) techniques]. Each molecular technique has its own strengths in detecting microalgae, but they may sometimes have limitations in terms of detection of other organisms. Among current technologies, qPCR may be considered the best method for molecular quantification of microalgae. Metagenomic microalgal diversity can easily be achieved by 454 pyrosequencing rather than by the clone library method. Current NGS, third and fourth generation technologies pave the way for the high-throughput detection and quantification of microalgal diversity, and have significant potential for future use in field monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn S, Kulis DM, Erdner DL, Anderson DM, Walt DR (2006) Fiber-optic for the simultaneous detection of multiple harmful algal bloom species. Appl Environ Microb 72(9):5742–5749

    Article  CAS  Google Scholar 

  • Alpermann TJ, Tillmann U, Beszteri B, Cembella AD, John U (2010) Phenotypic variation and genotypic diversity in a planktonic population of the toxigenic marine dinoflagellate Alexandrium tamarense (Dinophyceae). J Phycol 46:18–32

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    PubMed  CAS  Google Scholar 

  • Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4(7):e6372

    Article  PubMed  CAS  Google Scholar 

  • Anderson DM (1995) Identification of harmful algal species using molecular probes: an emerging technology. In: Lassus P, Arzul G, Erard E, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Lavoiser Science Publishers, Paris, pp 3–13

    Google Scholar 

  • Anderson DM, Walt DW (2009) A fiber optic microarray for the detection and enumeration of harmful algal bloom (HAB) species. Internal report: The NOAA/UNH cooperative institute for coastal and estuarine environmental technology (CICEET). http://ciceet.unh.edu/news/releases/spring09_reports/pdf/anderson_FR.pdf

  • Anderson DM, Kulis DM, Erdner D, Ahn S, Walt DR (2006) Fibre optic microarrays for the detection and enumeration of harmful algal bloom. Afr J Mar Sci 28(2):231–235

    Article  Google Scholar 

  • Andree KB, Fernández-Tejedor M, Elandaloussi LM, Quijano-Scheggia S, Sampedro N, Garcés E, Camp J, Diogéne J (2011) Quantitative PCR coupled with melt curve analysis for detection of selected Pseudo-nitzschia spp. (Bacillariophyceae) from the North Western Mediterranean sea. Appl Environ Microb 77(5):1651–1659

    Article  CAS  Google Scholar 

  • Anthony RM, Brown TJ, French GL (2000) Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J Clin Microbiol 38(2):781–788

    PubMed  CAS  Google Scholar 

  • Becker EW (2007) Microalgae as a source of protein. Biotenol Adv 25(2):207–210

    Article  CAS  Google Scholar 

  • Bertozzini E, PennaA PE, Bruce I, Magnani M (2005) Development of new procedures for the isolation of phytoplankton DNA from fixed samples. J Appl Phycol 17:223–229

    Article  CAS  Google Scholar 

  • Biegala IC, Kennaway G, Alverca E, Lennon JF, Vaulot D, Simon N (2002) Identification of bacteria associated with dinoflagellates (Dinophyceae) Alexandrium spp using tyramide signal amplification-fluorescent in situ hybridisation and confocal microscopy. J Phycol 38(2):404–411

    Article  CAS  Google Scholar 

  • Bott NJ, Ophel-Kellener KM, Sierp MT, Rowling KP, Mckay AC, Loo MGK, Tanner JE, Deveney MR (2010) Toward routine, DNA-based detection methods for marine pests. Biotechnol Adv 28:706–714

    Article  PubMed  CAS  Google Scholar 

  • Bråte J, Klaveness D, Rygh T, Jakobsen KS, Shalchian-Tabrizi K (2010) Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine-freshwater colonizations. BMC Microbiol 10:168. doi:10.1186/1471-2180-10-168

    Article  PubMed  CAS  Google Scholar 

  • Britschgi TB, Giovannoni SJ (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol 57(6):1707–1713

    PubMed  CAS  Google Scholar 

  • Brown MR (2002) Nutritional value of microalgae for aquculture. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortés MG, Simoes N (eds) Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Quintana Roo, México

  • Burki F, Kudryavtsev A, Matz MV, Aglyamova GV, Bulman S, Fiers M, Keeling PJ, Pawlowski J (2010) Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evol Biol 10:377

    Article  PubMed  CAS  Google Scholar 

  • Casper ET, Patterson SS, Bhanushali P, Farmer A, Smith M, Fries DP, Paul JH (2007) A handheld NASBA analyzer for the field detection and quantification of Karenia brevis. Harmful Algae 6(1):112–118

    Article  CAS  Google Scholar 

  • Casteleyn G, Leliaert F, Backeljau T, Debeer AE, Kotaki Y, Rhodes L, Lundholm N, Sabbe K, Vyverman W (2010) Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc Natl Acad Sci USA 107(29):12952–12957

    Article  PubMed  CAS  Google Scholar 

  • Cembella AD, Sullivan JJ, Boyer GL, Taylor FJR, Anderson RJ (1987) Variations in paralytic shellfish toxin composition within the Protogonyaulax tamarensis/catenella species complex: red tide dinoflagellates. Biochem Syst Ecol 15:171–186

    Article  CAS  Google Scholar 

  • Cheng KC, Ogden KL (2011) Algal biofuels: the research. American Institute of Chemical Engineers (AICHE). http://www.aiche.org

  • Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK (2010) Composition and genetic diversity of pico eukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4:1053–1059

    Article  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  PubMed  CAS  Google Scholar 

  • Cho SY, Nagai S, Nishitani G, Han MS (2009) Development of compound microsatellite markers in red-tide-causing dinoflagellate Akashiwo sanguinea (Dinophyceae). Mol Ecol Resour 9:915–917

    Article  PubMed  CAS  Google Scholar 

  • Countway P, Gast RJ, Savala P, Caron DA (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol 52(2):95–106

    Article  PubMed  CAS  Google Scholar 

  • de Bruin A, Ibelings BW, Donk EV (2003) Molecular techniques in phytoplankton research: from allozyme electrophoresis to genomics. Hydrobiologia 491(1–3):47–63

    Article  Google Scholar 

  • Delong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173(14):4371–4378

    PubMed  Google Scholar 

  • Diaz MR, Jacobson JW, Goodwin KD, Dubar SA, Fell JW (2010) Molecular detection of harmful algal blooms (HABs) using locked nucleic acids and bead array technology. Limnol Oceanogr Methods 8:269–284

    Article  PubMed  CAS  Google Scholar 

  • Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine Pico eukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67(7):2942–2951

    Article  PubMed  Google Scholar 

  • Dyhrman ST, Erdner D, La Du J, Galac M, Anderson DM (2006) Molecular quantification of toxic Alexandrium fundyense in the Gulf of Maine using real-time PCR. Harmful Algae 5(3):242–250

    Article  CAS  Google Scholar 

  • Dyhrman ST, Haley ST, Borchert JA, Lona B, Kollars N, Erdner DL (2010) Parallel analyses of Alexandrium catenella cell concentrations and shellfish toxicity in the Puget Sound. Appl Environ Microb 76(14):4647–4654

    Article  CAS  Google Scholar 

  • Edgcomb V, Orsi W, Bunge J, Jeon S, Christen R, Leslin C, Holder M, Taylor GT, Suarez P, Varela R, Epstein S (2011) Protistan microbial observatory in the Cariaco Basin, Caribbean I. pyrosequencing vs sanger insights in to species richness. ISME J 5:1344–1356. doi:10.1038/ismej.2011.6

    Article  PubMed  CAS  Google Scholar 

  • Edvardsen B, Shalchian-Tabrizi K, Jakobsen KS, Medlin LK, Dahl E, Brubak S, Paasche E (2003) Genetic variability and molecular phylogeny of Dinophysis species (Dinophyceae) from Norwegian waters inferred from single cells analysis of rDNA. J Phycol 39(2):395–408

    Article  CAS  Google Scholar 

  • Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    Article  PubMed  CAS  Google Scholar 

  • Ellison CK, Burton RS (2005) Application of bead array technology to community dynamics of marine phytoplankton. Mar Ecol Prog Ser 288:75–85

    Article  CAS  Google Scholar 

  • Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, ecosystem change, and resilience. Fron Ecol Environ 1:488–494

    Article  Google Scholar 

  • Erdner DL, Percy L, Keafer B, Lewis J, Anderson DM (2010) A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments. Deep Sea Res PT II 57:279–287

    Article  CAS  Google Scholar 

  • Evans KM, Chepurnov VA, Mann DG (2009) Ten microsatellite markers for the freshwater diatom Sellaphora capitata. Mol Ecol Resour 9:216–218

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Penna A, Bertozzini E, Vila M, Garces E, Magnani M (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a dinoflagellate). Appl Environ Microbiol 70(2):1199–1206

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Bertozzini E, Penna A, Perini F, Garcés E, Magnani M (2010) Analysis of rRNA gene content in the Mediterranean dinoflagellate Alexandrium catenella and Alexandrium taylori: implications for the quantitative real-time PCR-based monitoring methods. J Appl Phycol 22(1):1–9

    Article  CAS  Google Scholar 

  • Galluzzi L, Cegna A, Casabianca S, Penna A, Saunders N, Magnani M (2011) Development of an oligonucleotide microarray for the detection and monitoring of marine dinoflagellates. J Microbiol Meth 84(2):234–242

    Article  CAS  Google Scholar 

  • Gescher C, Metfies K, Frickenhaus S, Knefelkamp B, Wiltshire KH, Medlin LK (2008) Feasibility of assessing the community composition of Prasinophytes at the Helgoland Roads sampling site with a DNA microarray. Appl Env Microbiol 74:5305–5316

    Article  CAS  Google Scholar 

  • Godhe A, Asplund ME, Härnström K, Saravanan V, Tyagi A, Karunasagar I (2008) Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl Environ Microbiol 74(23):7174–7182

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotides arrays on glass supports. Nucleic Acids Res 22:5456–5465

    Article  PubMed  CAS  Google Scholar 

  • Handy SM, Demir E, Hutchins DA, Portune KJ, Whereat EB, Hare CE, Rose JM, Warner M, Farestad M, Cary S, Coyne KJ (2008) Using quantitative real-time PCR to study competition and community dynamics among Delaware Inland Bays harmful algae in field and laboratory studies. Harmful Algae 7(5):599–613

    Article  CAS  Google Scholar 

  • Hosoi-Tanabe S, Sako Y (2005) Rapid detection of natural cells of Alexandrium tamarense and A. catenella (Dinophyceae) by fluorescence in situ hybridization. Harmful Algae 4(2):319–328

    Article  Google Scholar 

  • Hosoi-Tanabe S, Sako Y (2006) Development and application of fluorescence in situ hybridization (FISH) method for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella in cultured and natural seawater. Fish Sci 72(1):77–82

    Article  CAS  Google Scholar 

  • Hubbard KA, Rocap G, Armbrust EV (2008) Inter- and intraspecific community structure within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J Phycol 44(3):637–649

    Article  CAS  Google Scholar 

  • Joo S, Lee S-R, Park S (2010) Monitoring of phytoplankton community structure using terminal restriction fragment length polymorphism (T-RFLP). J Microbiol Meth 81(1):61–68

    Article  CAS  Google Scholar 

  • Ki J-S (2011) Hypervariable regions (V1-V9) of the dinoflagellate 18S rRNA using a large dataset for marker considerations. J Appl Phycol. doi:10.1007/s10811-011-9730-z

  • Ki J-S, Han M-S (2005) Sequence-based diagnostics and phylogenetic approach of uncultured freshwater dinoflagellate Peridinium (Dinophyceae) species, based on single-cell sequencing of rDNA. J Appl Phycol 17(2):147–153

    Article  CAS  Google Scholar 

  • Ki J-S, Han M-S (2006) A low-density oligonucleotide array study for parallel detection of harmful algal species using hybridization of consensus PCR products of LSU rDNA D2 domain. Biosens Bioelectron 21(9):1812–1821

    Article  PubMed  CAS  Google Scholar 

  • Ki J-S, Jang GY, Han M-S (2004) Integrated method for single-cell DNA extraction, PCR amplification, and sequencing of ribosomal DNA from harmful dinoflagellates Cochlodinium polykrikoides and Alexandrium catenella. Mar Biotechnol 6(6):587–593

    Article  PubMed  CAS  Google Scholar 

  • Kudela RM, Howard MDA, Jenkins BD, Miller PE, Smith GJ (2010) Using the molecular toolbox to compare harmful algal blooms in upwelling systems. Prog Oceanogr 85(1–2):108–121

    Article  Google Scholar 

  • Kumari N, Srivastava AK, Bhargava P, Rai LK (2009) Molecular approaches towards assessment of cyanobacterial biodiversity. Afr J Biotechnol 8(18):4284–4298

    CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82(20):6955–6959

    Article  PubMed  CAS  Google Scholar 

  • Lepère C, Vaulot D, Scanlan DJ (2009) Photosynthetic picoeukaryotic community structure in the South East Pacific Ocean encompassing the most oligotrophic waters on Earth. Environ Microbiol 11(12):3105–3117

    Article  PubMed  CAS  Google Scholar 

  • Lindquist HDA (1997) Probes for the specific detection of Cryptosporidium parvum. Water Res 31(10):2668–2671

    Article  CAS  Google Scholar 

  • Litaker RW, Tester PA (2006) Molecular approaches to the study of phytoplankton life cycles: implications for harmful algal bloom ecology. In: Granéli E, Turner T (eds) Ecology of harmful algae, ecological studies, vol 189. Springer, Heidelberg, pp 299–309

    Chapter  Google Scholar 

  • Liu W, Marsh T, Cheng H, Forney L (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  • Liu H, Wang H, Shi Z, Wang H, Yang C, Silke S, Tan W, Li Z (2006) TaqMan probe array for quantitative detection of DNA targets. Nucleic Acids Res 34(1):1–8

    Article  Google Scholar 

  • Man-Aharonovich D, Philosof A, Kirkup BC, Gal FL, Yogev T, Berman-Frank I, Polz MF, Vaulot D, Béjà O (2010) Diversity of active marine picoeukaryotes in the Eastern Mediterranean Sea unveiled using photosystem-II psbA transcripts. ISME J 4:1044–1052

    Article  PubMed  CAS  Google Scholar 

  • Mao F, Leung W-Y, Xin X (2007) Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol 7:76

    Article  PubMed  CAS  Google Scholar 

  • McCliment EA, Nelson CE, Carlson CA, Alldredge AL, Witting J, Amaral-Zettler LA (2011) An all-taxon microbial inventory of the Moorea coral reef ecosystem. ISME J. doi:10.1038/ismej.2011.108

  • Medinger R, Nolte V, Pandey RV (2010) Diversity in a hidden world: potential and limitation of next generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19(1):32–40

    Article  PubMed  Google Scholar 

  • Medlin LK, Kooistra WHCF (2010) Methods to estimate the diversity in the marine photosynthetic protist community with illustrations from case studies: a review. Diversity 2:973–1014

    Article  CAS  Google Scholar 

  • Medlin LK, Lange M, Noethig EV (2000) Genetic diversity in the marine phytoplankton: a review and a consideration of Antarctic phytoplankton. Antarct Sc 12:325–331

    Google Scholar 

  • Medlin LK, Metfies K, Mehl H, Wiltshire K, Valentin K (2006) Picoplankton diversity at the Helgoland Time Series Site as assessed by three molecular methods. Microb Ecol 167:1432–1451

    Google Scholar 

  • Medlin LK, Metfies K, John U, Olsen J (2007) Algal molecular systematics: a review of the past and prospects for the future. In: Broadie J, Lewis J (eds) Unravelling the algae: the past, present and future of algal systematics. Sys Assn Special Vol Ser 75. CRC Press, Taylor & Francis Group, London, pp 341–353

    Chapter  Google Scholar 

  • Metfies K, Medlin LK (2008) Feasibility of transferring fluorescent in situ hybridization probes to an 18S rRNA gene phylochip and mapping of signal intensities. Appl Envron Microbiol 74:2814–2821

    Article  CAS  Google Scholar 

  • Metfies K, Huljic S, Lange M, Medlin LK (2005) Electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii with a DNA-biosensor. Biosens Bioelectron 20:1349–1357

    Article  PubMed  CAS  Google Scholar 

  • Metfies K, Töbe K, Scholin CA, Medlin LK (2006) Laboratory and field applications of ribosomal RNA probes to aid the detection and monitoring of Harmful Algae. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer Verlag, Berlin, Heidelberg, pp 11–325

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev 11:31–46

    Article  CAS  Google Scholar 

  • Mitterer G, Huber M, Leidinger E, Kiristis C, Lubitz W, Mueller MW, Schmidt WM (2004) Microarray-based identification of bacteria in clinical samples by solid-phase PCR amplification of 23S ribosomal DNA sequences. J Clin Microbiol 42(2):1048–1057

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, López-García P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Bioph Res Co 289:150–154

    Article  CAS  Google Scholar 

  • Nagai SC, Lian S, Yamaguchi M, Hamaguchi Y, Matsuyama S, Itakura H, Shimada S, Kaga H, Yamauchi Y, Sonda T, Kim C, Hogetsu T (2007) Microsatellite markers reveal population genetic structure of the toxic dinoflagellate Alexandrium tamarense (Dinophyceae) in Japanese coastal waters. J Phycol 43:43–54

    Article  CAS  Google Scholar 

  • Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N (2004) A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Appl Environ Microbiol 70(7):4064–4072

    Article  PubMed  CAS  Google Scholar 

  • Not F, Gausling R, Azam F, Heidelberg JF, Worden AZ (2007) Vertical distribution of picoeukaryotic diversity in the open ocean. Environ Microbiol 9:1233–1252

    Article  PubMed  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  PubMed  CAS  Google Scholar 

  • Nowrousian M (2010) Net-generation sequencing techniques for eukaryotic microorganisms: sequencing based solutions to biological problems. Eukaryot Cell 9(9):1300–1310

    Article  PubMed  CAS  Google Scholar 

  • Oldach DW, Delwiche CF, Jakobsen KS, Tengs T, Brown EG, Kempton JW, Schaefer EF, Bowers HA, Glasgow HB Jr, Burkholder JM, Steidinger KA, Rublee PA (2000) Heteroduplex mobility assay-guided sequence discovery: elucidation of the small subunit (18S) rDNA sequences of Pfiesteria piscicida and related dinoflagellates from complex algal culture and environmental sample DNA pools. Proc Natl Acad Sci USA 97(8):4303–4308

    Article  PubMed  CAS  Google Scholar 

  • Park TG, Salas MF, Bolch CJS, Hallegraeff GM (2007) Development of a realtime PCR probe for quantification of the heterotrophic dinoflagellate Cryptoperidiniopsis brodyi (Dinophyceae) in environmental samples. Appl Environ Microbiol 73:2552–2560

    Article  PubMed  CAS  Google Scholar 

  • Park TG, Park YT, Lee Y (2009) Development of a SYTO9 based real-time PCR probe for detection and quantification of toxic dinoflagellate Karlodinium veneficum (Dinophyceae) in environmental samples. Phycologia 48(1):32–43

    Article  CAS  Google Scholar 

  • Penna A, Galluzzi L (2008) PCR techniques a diagnostic tool for the identification and enumeration of toxic marine phytoplankton species. In: Evangelista V, Barsanti L, Frassanito AM, Passarelli V, Gualtieri P (eds) Algal toxins: nature, occurrence, effect and detection. Springer Science + Business media BV, pp 261–284

  • Perini F, Casabianca A, Battocchi C, Accoroni S, Totti C, Penna A (2011) New approaches using the real-time PCR method for estimation of the toxic marine dinoflagellate Ostreopsis cf. ovata in marine environmental. PLoS One 6(3):e17699. doi:10.1371/journal.pone.0017699

    Article  PubMed  CAS  Google Scholar 

  • Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic MD (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55(5):856–866

    Article  PubMed  CAS  Google Scholar 

  • Potvin M, Lovejoy C (2009) PCR-based diversity estimates of artificial and environmental 18s rRNA gene libraries. J Eukaryot Microbiol 56(2):174–181

    Article  PubMed  CAS  Google Scholar 

  • Richlen ML, Barber PH (2005) A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Mol Ecol Notes 5:688–691

    Article  CAS  Google Scholar 

  • Ripley SJ, Baker AS, Miller PI, Walne AW, Schroeder DC (2008) Development and validation of a molecular technique for the analysis of archived formalin-preserved phytoplankton samples permits retrospective assessment of Emiliania huxleyi communities. J Microbiol Meth. doi:10.1016/j.mimet.2008.02.001

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    PubMed  CAS  Google Scholar 

  • Roesch LFW, Lorca GL, Casella G, Giongo A, Naranjo A, Pionzio AM (2009) Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J 3:536–548

    Article  PubMed  CAS  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Rublee PA, Kempton JW, Schaefer EF, Allen C, Harris J, Oldach DW, Bowers H, Tengs T, Burkholder JM, Glasgow HB (2001) Use of molecular probes to assess geographic distribution of Pfiesteria species. Environ Health Perspect 109(5):765–767

    Article  PubMed  CAS  Google Scholar 

  • Sako Y, Kim CH, Ninomiya H, Adachi M, Ishida Y (1990) Isozyme and cross analysis of mating populations in the Alexandrium catenella/tamarense species complex. In: Granéli E, Sundstrom B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 320–323

    Google Scholar 

  • Sarno D, Kooistra WHCF, Medlin LK, Percopo I, Zingone A (2005) Diversity in the genus Skeletonema (Bacillariophyceae): Skeletonema costatum (Bacillariophyceae) consists of several genetically and morphologically distinct species with the description of four new species. J Phycol 41:151–176

    Article  Google Scholar 

  • Schlötterer C (1998) Ribosomal DNA probes and primers. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Chapman & Hall, London, pp 267–276

    Chapter  Google Scholar 

  • Scholin CA, Anderson DA (1993) Population analysis of toxic and non-toxic Alexandrium species using ribosomal RNA signature sequences. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, pp 95–102

    Google Scholar 

  • Scholin CA, Herzog M, Sogin ML, Anderson DM (1994) Identification of group and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol 30:999–1011

    Article  CAS  Google Scholar 

  • Scorzetti G, Brand LE, Hitchcock GL, Rein KS, Sinigalliano CD, Fell JW (2009) Multiple simultaneous detection of harmful algal blooms (HABs) through a high throughput bead array technology, with potential use in phytoplankton community analysis. Harmful Algae 8:196–211

    Article  PubMed  CAS  Google Scholar 

  • Sellner KG, Gregory E, Doucette J, Kirkpatric GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–440

    Article  PubMed  CAS  Google Scholar 

  • Shalchian-Tabrizi K, Reier-Røberg K, Ree DK, Klaveness D, Brate J (2011) Marine-freshwater colonizations of haptophytes inferred from phylogeny of environmental 18S rDNA sequences. J Eukaryot Microbiol 58(11):315–318

    Article  PubMed  Google Scholar 

  • Shapiro LP, Campbell L, Haugen EM (1989) Immunochemical recognition of phytoplankton species. Mar Ecol Prog Ser 57:219–224

    Article  Google Scholar 

  • Shendure J, Ji H (2008) Next generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Tyson GW, DeLong EF (2009) Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature 459(7244):266–269

    Article  PubMed  CAS  Google Scholar 

  • Shi XL, Lepère C, Scanlan DJ, Vaulot D (2011) Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLoS One 6(4):e18979. doi:10.1371/journal.pone.0018979

    Article  PubMed  CAS  Google Scholar 

  • Simon N, Campbell L, Örnȯlfsdȯttir E, Groben R, Guillou L, Lange M, Medlin LK (2000) Oligonucleotide probes for the identification of three algal groups by dot blot and Fluorescent Whole-Cell Hybridization. J Eukaryot Microbiol 47(1):76–84

    Article  PubMed  CAS  Google Scholar 

  • Soto K, Collantes G, Zahr M, Kuzhar J (2005) Simultaneous enumeration of Phaeodactylum tricornutum (MCB292) and bacteria growing in mixed communities. Invest Mar Valparaiso 33(2):143–149

    Google Scholar 

  • Stackebrandt E (2006) Molecular identification, systematics, and population structure of prokaryotes. Springer-Verlag Berlin Heidelberg, Germany, pp 51–80

    Book  Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69(5):2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, Richard TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(1):21–31

    Article  PubMed  CAS  Google Scholar 

  • Tai V, Poon AF, Paulsen IT, Palenik B (2011) Selection in coastal Synechococcus (cyanobacteria) populations eva;uated from environmental metagenomics. PLoS One 6(9):e24249

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Horiguchi T (2006) Acquiring scanning electron microscopical. Light microscopical and multiple gene sequence data from a single dinoflagellate cell. J Phycol 42:251–256

    Article  Google Scholar 

  • Töbe K, Eller G, Medlin LK (2006) Automated detection and enumeration for toxic algae by solid-phase cytometry and the introduction of a new probe for Prymnesium parvum (Haptophyta:Prymnesiophyceae). J Plank Res 28(7):643–657

    Article  Google Scholar 

  • Toyoda K, Nagasaki K, Tomaru Y (2010) Application of real-time PCR assay for detection and quantification of bloom-forming diatom Chaetoceros tenuissimus Meunier. Plankton Benthos Res 5(2):56–61

    Article  Google Scholar 

  • Tyrrell JV, Connell LB, Scholin CA (2002) Monitoring for Heterosigma akashiwo using a sandwich hybridization assay. Harmful Algae 1:205–214

    Article  CAS  Google Scholar 

  • Ulrich RM, Casper ET, Campbell L, Richardson B, Heil CA, Paul JH (2010) Detection and quantification of Karenia mikimotoi using real-time nucleic acid sequence-based amplification with internal control RNA (IC-NASBA). Harmful Algae 9(1):116–122

    Article  CAS  Google Scholar 

  • Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (3 mm) in marine ecosystems. FEMS Microbiol Rev 32:795–820

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Li MJ, Alam Y, Geng Z, Yamasaki S, Shi L (2008) Loop-mediated isothermal amplification method for rapid detection of the toxic dinoflagellate Alexandrium, which causes algal blooms and poisoning of shellfish. FEMS Microbiol Lett 282:15–21

    Article  PubMed  CAS  Google Scholar 

  • Widmer F, Hartmann M, Frey B, Kölliker B (2006) A novel strategy to extract specific phylogenetics sequence information from community T-RFLP. J Microbiol Meth 66:512–520

    Article  CAS  Google Scholar 

  • Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F (2003) A model based background adjustment for oligonucleotide expression arrays. Technical report, Johns Hopkins University, dept of biostatistics working papers. http://www.bepress.com/jhubiostat/paper1

  • Yershov G, Barsky V, Kirillov E, Kreindlin K, Ivanov I, Parinov S, Guschin D, Drobishev A, Dubiley S (1996) DNA analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci USA 93(10):4913–4918

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717

    Article  PubMed  CAS  Google Scholar 

  • Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeukaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by both the Marine and Extreme Genome Research Center Program of the Ministry of Land, Transportation and Maritime Affairs, Republic of Korea, and by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-C1ABA001-2011-0018573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Seu Ki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebenezer, V., Medlin, L.K. & Ki, JS. Molecular Detection, Quantification, and Diversity Evaluation of Microalgae. Mar Biotechnol 14, 129–142 (2012). https://doi.org/10.1007/s10126-011-9427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9427-y

Keywords

Navigation