Skip to main content

Advertisement

Log in

Autocrine and paracrine purinergic signaling in the most lethal types of cancer

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Cancer comprises a collection of diseases that occur in almost any tissue and it is characterized by an abnormal and uncontrolled cell growth that results in tumor formation and propagation to other tissues, causing tissue and organ malfunction and death. Despite the undeniable improvement in cancer diagnostics and therapy, there is an urgent need for new therapeutic and preventive strategies with improved efficacy and fewer side effects. In this context, purinergic signaling emerges as an interesting candidate as a cancer biomarker or therapeutic target. There is abundant evidence that tumor cells have significant changes in the expression of purinergic receptors, which comprise the G-protein coupled P2Y and AdoR families of receptors and the ligand-gated ion channel P2X receptors. Tumor cells also exhibit changes in the expression of nucleotidases and other enzymes involved in nucleotide metabolism, and the concentrations of extracellular nucleotides are significantly higher than those observed in normal cells. In this review, we will focus on the potential role of purinergic signaling in the ten most lethal cancers (lung, breast, colorectal, liver, stomach, prostate, cervical, esophagus, pancreas, and ovary), which together are responsible for more than 5 million annual deaths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kitadai NMS (2018) Origins of building blocks of life: a review. Geosci Front 9:1117–1153

    Article  CAS  Google Scholar 

  2. Raczynska EDKB (2010) Prototopy and π-electron delocalization for purines and its radical ions—DFT studies. J Phys Org Chem 23:828–835

    Article  CAS  Google Scholar 

  3. Henderson JFPA (1973) Chapter 2—configuration and conformation of nucleosides and nucleotides. Nucleotide metabolism—an introduction Academic Press, New York:22–27

  4. Nguyen MD, Lee ST, Ross AE, Ryals M, Choudhry VI, Venton BJ (2014) Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex. PLoS One 9(1):e87165. https://doi.org/10.1371/journal.pone.0087165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burnstock G (2018) Purine and purinergic receptors. Brain Neurosci Adv 2:2398212818817494. https://doi.org/10.1177/2398212818817494

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jacobson KA, Muller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49. https://doi.org/10.1016/j.neuropharm.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Feng LL, Cai YQ, Zhu MC, Xing LJ, Wang X (2020) The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int 20:110. https://doi.org/10.1186/s12935-020-01195-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2(2):361–370. https://doi.org/10.1007/s11302-005-5303-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zimmermann FF, Altenhofen S, Kist LW, Leite CE, Bogo MR, Cognato GP, Bonan CD (2016) Unpredictable chronic stress alters adenosine metabolism in zebrafish brain. Mol Neurobiol 53(4):2518–2528. https://doi.org/10.1007/s12035-015-9270-7

    Article  CAS  PubMed  Google Scholar 

  10. Novitskaya T, Chepurko E, Covarrubias R, Novitskiy S, Ryzhov SV, Feoktistov I, Gumina RJ (2016) Extracellular nucleotide regulation and signaling in cardiac fibrosis. J Mol Cell Cardiol 93:47–56. https://doi.org/10.1016/j.yjmcc.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  11. Stefan C, Jansen S, Bollen M (2005) NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 30(10):542–550. https://doi.org/10.1016/j.tibs.2005.08.005

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5'-nucleotidase (CD73). Purinergic Signal 2(2):351–360. https://doi.org/10.1007/s11302-005-5302-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Strater N (2006) Ecto-5'-nucleotidase: Structure function relationships. Purinergic Signal 2(2):343–350. https://doi.org/10.1007/s11302-006-9000-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Thery C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565. https://doi.org/10.1242/jcs.128868

    Article  CAS  PubMed  Google Scholar 

  16. Whiteside TL (2015) The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev Mol Diagn 15(10):1293–1310. https://doi.org/10.1586/14737159.2015.1071666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Volonte C, D'Ambrosi N (2009) Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J 276(2):318–329. https://doi.org/10.1111/j.1742-4658.2008.06793.x

    Article  CAS  PubMed  Google Scholar 

  18. Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36(3):293–303. https://doi.org/10.1038/onc.2016.206

    Article  CAS  PubMed  Google Scholar 

  19. Dos Santos-Rodrigues A, Grane-Boladeras N, Bicket A, Coe IR (2014) Nucleoside transporters in the purinome. Neurochem Int 73:229–237. https://doi.org/10.1016/j.neuint.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  20. Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Clunes MT, Kemp PJ (1996) P2u purinoceptor modulation of intracellular Ca2+ in a human lung adenocarcinoma cell line: down-regulation of Ca2+ influx by protein kinase C. Cell Calcium 20(4):339–346. https://doi.org/10.1016/s0143-4160(96)90039-1

    Article  CAS  PubMed  Google Scholar 

  22. Schafer R, Sedehizade F, Welte T, Reiser G (2003) ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am J Phys Lung Cell Mol Phys 285(2):L376–L385. https://doi.org/10.1152/ajplung.00447.2002

    Article  Google Scholar 

  23. Zhao DM, Xue HH, Chida K, Suda T, Oki Y, Kanai M, Uchida C, Ichiyama A, Nakamura H (2000) Effect of erythromycin on ATP-induced intracellular calcium response in A549 cells. Am J Phys Lung Cell Mol Phys 278(4):L726–L736. https://doi.org/10.1152/ajplung.2000.278.4.L726

    Article  CAS  Google Scholar 

  24. Kreda SM, Okada SF, van Heusden CA, O'Neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER (2007) Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol 584(Pt 1):245–259. https://doi.org/10.1113/jphysiol.2007.139840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takai E, Tsukimoto M, Harada H, Sawada K, Moriyama Y, Kojima S (2012) Autocrine regulation of TGF-beta1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells. J Cell Sci 125(Pt 21):5051–5060. https://doi.org/10.1242/jcs.104976

    Article  CAS  PubMed  Google Scholar 

  26. Takai E, Tsukimoto M, Harada H, Kojima S (2014) Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells. Purinergic Signal 10(3):487–497. https://doi.org/10.1007/s11302-014-9411-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmid S, Kubler M, Korcan Ayata C, Lazar Z, Haager B, Hossfeld M, Meyer A, Cicko S, Elze M, Wiesemann S, Zissel G, Passlick B, Idzko M (2015) Altered purinergic signaling in the tumor associated immunologic microenvironment in metastasized non-small-cell lung cancer. Lung Cancer 90(3):516–521. https://doi.org/10.1016/j.lungcan.2015.10.005

    Article  PubMed  Google Scholar 

  28. Song S, Jacobson KN, McDermott KM, Reddy SP, Cress AE, Tang H, Dudek SM, Black SM, Garcia JG, Makino A, Yuan JX (2016) ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells. Am J Phys Cell Phys 310(2):C99–C114. https://doi.org/10.1152/ajpcell.00092.2015

  29. Tak E, Jun DY, Kim SH, Park GC, Lee J, Hwang S, Song GW, Lee SG (2016) Upregulation of P2Y2 nucleotide receptor in human hepatocellular carcinoma cells. J Int Med Res 44(6):1234–1247. https://doi.org/10.1177/0300060516662135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao Y, Wang X, Li Y, Evers M, Zhang H, Chen X (2019) Extracellular and macropinocytosis internalized ATP work together to induce epithelial-mesenchymal transition and other early metastatic activities in lung cancer. Cancer Cell Int 19:254. https://doi.org/10.1186/s12935-019-0973-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schneider G, Glaser T, Lameu C, Abdelbaset-Ismail A, Sellers ZP, Moniuszko M, Ulrich H, Ratajczak MZ (2015) Extracellular nucleotides as novel, underappreciated pro-metastatic factors that stimulate purinergic signaling in human lung cancer cells. Mol Cancer 14:201. https://doi.org/10.1186/s12943-015-0469-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2008) Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J Pharmacol Exp Ther 324(2):694–700. https://doi.org/10.1124/jpet.107.131540

    Article  CAS  PubMed  Google Scholar 

  33. Giacomelli C, Daniele S, Romei C, Tavanti L, Neri T, Piano I, Celi A, Martini C, Trincavelli ML (2018) The A2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front Pharmacol 9:54. https://doi.org/10.3389/fphar.2018.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim SJ, Min HY, Chung HJ, Park EJ, Hong JY, Kang YJ, Shin DH, Jeong LS, Lee SK (2008) Inhibition of cell proliferation through cell cycle arrest and apoptosis by thio-Cl-IB-MECA, a novel A3 adenosine receptor agonist, in human lung cancer cells. Cancer Lett 264(2):309–315. https://doi.org/10.1016/j.canlet.2008.01.037

    Article  CAS  PubMed  Google Scholar 

  35. Tafani M, Schito L, Pellegrini L, Villanova L, Marfe G, Anwar T, Rosa R, Indelicato M, Fini M, Pucci B, Russo MA (2011) Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B. Carcinogenesis 32(8):1167–1175. https://doi.org/10.1093/carcin/bgr101

    Article  CAS  PubMed  Google Scholar 

  36. Xia J, Yu X, Tang L, Li G, He T (2015) P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep 34(1):103–110. https://doi.org/10.3892/or.2015.3979

    Article  CAS  PubMed  Google Scholar 

  37. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, Perfettini JL, Schlemmer F, Tasdemir E, Uhl M, Genin P, Civas A, Ryffel B, Kanellopoulos J, Tschopp J, Andre F, Lidereau R, McLaughlin NM, Haynes NM, Smyth MJ, Kroemer G, Zitvogel L (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178. https://doi.org/10.1038/nm.2028

    Article  CAS  PubMed  Google Scholar 

  38. Avanzato D, Genova T, Fiorio Pla A, Bernardini M, Bianco S, Bussolati B, Mancardi D, Giraudo E, Maione F, Cassoni P, Castellano I, Munaron L (2016) Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling. Sci Rep 6:32602. https://doi.org/10.1038/srep32602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Joo YN, Jin H, Eun SY, Park SW, Chang KC, Kim HJ (2014) P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell MDA-MB-231 contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment. Oncotarget 5(19):9322–9334. https://doi.org/10.18632/oncotarget.2427

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li HJ, Wang LY, Qu HN, Yu LH, Burnstock G, Ni X, Xu M, Ma B (2011) P2Y2 receptor-mediated modulation of estrogen-induced proliferation of breast cancer cells. Mol Cell Endocrinol 338(1-2):28–37. https://doi.org/10.1016/j.mce.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  41. Chadet S, Jelassi B, Wannous R, Angoulvant D, Chevalier S, Besson P, Roger S (2014) The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway. Carcinogenesis 35(6):1238–1247. https://doi.org/10.1093/carcin/bgt493

    Article  CAS  PubMed  Google Scholar 

  42. Eun SY, Ko YS, Park SW, Chang KC, Kim HJ (2015) P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells. Oncol Rep 34(1):195–202. https://doi.org/10.3892/or.2015.3972

    Article  CAS  PubMed  Google Scholar 

  43. Zhang JL, Liu Y, Yang H, Zhang HQ, Tian XX, Fang WG (2017) ATP-P2Y2-beta-catenin axis promotes cell invasion in breast cancer cells. Cancer Sci 108(7):1318–1327. https://doi.org/10.1111/cas.13273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin H, Ko YS, Kim HJ (2018) P2Y2R-mediated inflammasome activation is involved in tumor progression in breast cancer cells and in radiotherapy-resistant breast cancer. Int J Oncol 53(5):1953–1966. https://doi.org/10.3892/ijo.2018.4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma X, Pan X, Wei Y, Tan B, Yang L, Ren H, Qian M, Du B (2016) Chemotherapy-induced uridine diphosphate release promotes breast cancer metastasis through P2Y6 activation. Oncotarget 7(20):29036–29050. https://doi.org/10.18632/oncotarget.8664

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gareau AJ, Brien C, Gebremeskel S, Liwski RS, Johnston B, Bezuhly M (2018) Ticagrelor inhibits platelet-tumor cell interactions and metastasis in human and murine breast cancer. Clin Exp Metastasis 35(1-2):25–35. https://doi.org/10.1007/s10585-018-9874-1

    Article  CAS  PubMed  Google Scholar 

  47. Mirza A, Basso A, Black S, Malkowski M, Kwee L, Pachter JA, Lachowicz JE, Wang Y, Liu S (2005) RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells leads to diminished rates of cell proliferation and induction of apoptosis. Cancer Biol Ther 4(12):1355–1360. https://doi.org/10.4161/cbt.4.12.2196

    Article  CAS  PubMed  Google Scholar 

  48. Dastjerdi MN, Valiani A, Mardani M, Ra MZ (2016) Adenosine A1 receptor modifies P53 expression and apoptosis in breast cancer cell line Mcf-7. Bratisl Lek Listy 117(4):242–246. https://doi.org/10.4149/bll_2016_046

    Article  PubMed  Google Scholar 

  49. Beavis PA, Milenkovski N, Stagg J, Smyth MJ, Darcy PK (2013) A2A blockade enhances anti-metastatic immune responses. Oncoimmunology 2(12):e26705. https://doi.org/10.4161/onci.26705

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mittal D, Young A, Stannard K, Yong M, Teng MW, Allard B, Stagg J, Smyth MJ (2014) Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res 74(14):3652–3658. https://doi.org/10.1158/0008-5472.CAN-14-0957

    Article  CAS  PubMed  Google Scholar 

  51. Petruk N, Tuominen S, Akerfelt M, Mattsson J, Sandholm J, Nees M, Yegutkin GG, Jukkola A, Tuomela J, Selander KS (2021) CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Sci Rep 11(1):6035. https://doi.org/10.1038/s41598-021-85379-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fernandez-Gallardo M, Gonzalez-Ramirez R, Sandoval A, Felix R, Monjaraz E (2016) Adenosine stimulate proliferation and migration in triple negative breast cancer cells. PLoS One 11(12):e0167445. https://doi.org/10.1371/journal.pone.0167445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Desmet CJ, Gallenne T, Prieur A, Reyal F, Visser NL, Wittner BS, Smit MA, Geiger TR, Laoukili J, Iskit S, Rodenko B, Zwart W, Evers B, Horlings H, Ajouaou A, Zevenhoven J, van Vliet M, Ramaswamy S, Wessels LF, Peeper DS (2013) Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci U S A 110(13):5139–5144. https://doi.org/10.1073/pnas.1222085110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jafari SM, Joshaghani HR, Panjehpour M, Aghaei M (2018) A2B adenosine receptor agonist induces cell cycle arrest and apoptosis in breast cancer stem cells via ERK1/2 phosphorylation. Cell Oncol (Dordr) 41(1):61–72. https://doi.org/10.1007/s13402-017-0359-z

    Article  CAS  Google Scholar 

  55. Lan J, Lu H, Samanta D, Salman S, Lu Y, Semenza GL (2018) Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc Natl Acad Sci U S A 115(41):E9640–E9648. https://doi.org/10.1073/pnas.1809695115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P (2004) The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10(13):4472–4479. https://doi.org/10.1158/1078-0432.CCR-03-0651

    Article  CAS  PubMed  Google Scholar 

  57. Panjehpour M, Karami-Tehrani F (2004) An adenosine analog (IB-MECA) inhibits anchorage-dependent cell growth of various human breast cancer cell lines. Int J Biochem Cell Biol 36(8):1502–1509. https://doi.org/10.1016/j.biocel.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  58. Ledderose C, Hefti MM, Chen Y, Bao Y, Seier T, Li L, Woehrle T, Zhang J, Junger WG (2016) Adenosine arrests breast cancer cell motility by A3 receptor stimulation. Purinergic Signal 12(4):673–685. https://doi.org/10.1007/s11302-016-9531-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Varani K, Vincenzi F, Targa M, Paradiso B, Parrilli A, Fini M, Lanza G, Borea PA (2013) The stimulation of A(3) adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer 49(2):482–491. https://doi.org/10.1016/j.ejca.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  60. Jafari SM, Panjehpour M, Aghaei M, Joshaghani HR, Enderami SE (2017) A3 adenosine receptor agonist inhibited survival of breast cancer stem cells via GLI-1 and ERK1/2 pathway. J Cell Biochem 118(9):2909–2920. https://doi.org/10.1002/jcb.25945

    Article  CAS  PubMed  Google Scholar 

  61. Samanta D, Park Y, Ni X, Li H, Zahnow CA, Gabrielson E, Pan F, Semenza GL (2018) Chemotherapy induces enrichment of CD47(+)/CD73(+)/PDL1(+) immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci U S A 115(6):E1239–E1248. https://doi.org/10.1073/pnas.1718197115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qiao Z, Li X, Kang N, Yang Y, Chen C, Wu T, Zhao M, Liu Y, Ji X (2019) A novel specific anti-CD73 antibody inhibits triple-negative breast cancer cell motility by regulating autophagy. Int J Mol Sci 20(5). https://doi.org/10.3390/ijms20051057

  63. Turcotte M, Allard D, Mittal D, Bareche Y, Buisseret L, Jose V, Pommey S, Delisle V, Loi S, Joensuu H, Kellokumpu-Lehtinen PL, Sotiriou C, Smyth MJ, Stagg J (2017) CD73 Promotes Resistance to HER2/ErbB2 Antibody Therapy. Cancer Res 77(20):5652–5663. https://doi.org/10.1158/0008-5472.CAN-17-0707

    Article  CAS  PubMed  Google Scholar 

  64. Janssens R, Boeynaems JM (2001) Effects of extracellular nucleotides and nucleosides on prostate carcinoma cells. Br J Pharmacol 132(2):536–546. https://doi.org/10.1038/sj.bjp.0703833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Slater M, Danieletto S, Pooley M, Cheng Teh L, Gidley-Baird A, Barden JA (2004) Differentiation between cancerous and normal hyperplastic lobules in breast lesions. Breast Cancer Res Treat 83(1):1–10. https://doi.org/10.1023/B:BREA.0000010670.85915.0f

    Article  PubMed  Google Scholar 

  66. Qiu Y, Li WH, Zhang HQ, Liu Y, Tian XX, Fang WG (2014) P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS One 9(12):e114371. https://doi.org/10.1371/journal.pone.0114371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilbert SM, Oliphant CJ, Hassan S, Peille AL, Bronsert P, Falzoni S, Di Virgilio F, McNulty S, Lara R (2019) ATP in the tumour microenvironment drives expression of nfP2X7, a key mediator of cancer cell survival. Oncogene 38(2):194–208. https://doi.org/10.1038/s41388-018-0426-6

    Article  CAS  PubMed  Google Scholar 

  68. Shabbir M, Ryten M, Thompson C, Mikhailidis D, Burnstock G (2008) Characterization of calcium-independent purinergic receptor-mediated apoptosis in hormone-refractory prostate cancer. BJU Int 101(3):352–359

    Article  CAS  PubMed  Google Scholar 

  69. Wei Q, Costanzi S, Liu QZ, Gao ZG, Jacobson KA (2011) Activation of the P2Y1 receptor induces apoptosis and inhibits proliferation of prostate cancer cells. Biochem Pharmacol 82(4):418–425. https://doi.org/10.1016/j.bcp.2011.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Le HTT, Rimpilainen T, Konda Mani S, Murugesan A, Yli-Harja O, Candeias NR, Kandhavelu M (2019) Synthesis and preclinical validation of novel P2Y1 receptor ligands as a potent anti-prostate cancer agent. Sci Rep 9(1):18938. https://doi.org/10.1038/s41598-019-55194-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li WH, Qiu Y, Zhang HQ, Liu Y, You JF, Tian XX, Fang WG (2013) P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br J Cancer 109(6):1666–1675. https://doi.org/10.1038/bjc.2013.484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li WH, Qiu Y, Zhang HQ, Tian XX, Fang WG (2015) P2Y2 Receptor and EGFR cooperate to promote prostate cancer cell invasion via ERK1/2 pathway. PLoS One 10(7):e0133165. https://doi.org/10.1371/journal.pone.0133165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aghaei M, Karami-Tehrani F, Panjehpour M, Salami S, Fallahian F (2012) Adenosine induces cell-cycle arrest and apoptosis in androgen-dependent and -independent prostate cancer cell lines, LNcap-FGC-10, DU-145, and PC3. Prostate 72(4):361–375. https://doi.org/10.1002/pros.21438

    Article  CAS  PubMed  Google Scholar 

  74. Wei Q, Costanzi S, Balasubramanian R, Gao ZG, Jacobson KA (2013) A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signal 9(2):271–280. https://doi.org/10.1007/s11302-012-9350-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Q, Wang L, Feng YH, Li X, Zeng R, Gorodeski GI (2004) P2X7 receptor-mediated apoptosis of human cervical epithelial cells. Am J Phys Cell Phys 287(5):C1349–C1358. https://doi.org/10.1152/ajpcell.00256.2004

    Article  CAS  Google Scholar 

  76. Feng YH, Li X, Zeng R, Gorodeski GI (2006) Endogenously expressed truncated P2X7 receptor lacking the C-terminus is preferentially upregulated in epithelial cancer cells and fails to mediate ligand-induced pore formation and apoptosis. Nucleosides Nucleotides Nucleic Acids 25(9-11):1271–1276. https://doi.org/10.1080/15257770600890921

    Article  CAS  PubMed  Google Scholar 

  77. Feng YH, Li X, Wang L, Zhou L, Gorodeski GI (2006) A truncated P2X7 receptor variant (P2X7-j) endogenously expressed in cervical cancer cells antagonizes the full-length P2X7 receptor through hetero-oligomerization. J Biol Chem 281(25):17228–17237. https://doi.org/10.1074/jbc.M602999200

    Article  CAS  PubMed  Google Scholar 

  78. Li X, Zhou L, Feng YH, Abdul-Karim FW, Gorodeski GI (2006) The P2X7 receptor: a novel biomarker of uterine epithelial cancers. Cancer Epidemiol Biomark Prev 15(10):1906–1913. https://doi.org/10.1158/1055-9965.EPI-06-0407

    Article  CAS  Google Scholar 

  79. Okuda A, Furuya K, Kiyohara T (2003) ATP-induced calcium oscillations and change of P2Y subtypes with culture conditions in HeLa cells. Cell Biochem Funct 21(1):61–68. https://doi.org/10.1002/cbf.992

    Article  CAS  PubMed  Google Scholar 

  80. Muscella A, Elia MG, Greco S, Storelli C, Marsigliante S (2003) Activation of P2Y2 receptor induces c-FOS protein through a pathway involving mitogen-activated protein kinases and phosphoinositide 3-kinases in HeLa cells. J Cell Physiol 195(2):234–240. https://doi.org/10.1002/jcp.10242

    Article  CAS  PubMed  Google Scholar 

  81. Muscella A, Elia MG, Greco S, Storelli C, Marsigliante S (2003) Activation of P2Y2 purinoceptor inhibits the activity of the Na+/K+-ATPase in HeLa cells. Cell Signal 15(1):115–121. https://doi.org/10.1016/s0898-6568(02)00062-1

    Article  CAS  PubMed  Google Scholar 

  82. Muscella A, Greco S, Elia MG, Storelli C, Marsigliante S (2004) Differential signalling of purinoceptors in HeLa cells through the extracellular signal-regulated kinase and protein kinase C pathways. J Cell Physiol 200(3):428–439. https://doi.org/10.1002/jcp.20033

    Article  CAS  PubMed  Google Scholar 

  83. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgilio F (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72(12):2957–2969. https://doi.org/10.1158/0008-5472.CAN-11-1947

    Article  CAS  PubMed  Google Scholar 

  84. Vazquez-Cuevas FG, Cruz-Rico A, Garay E, Garcia-Carranca A, Perez-Montiel D, Juarez B, Arellano RO (2013) Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse. Reprod Fertil Dev 25(7):971–984. https://doi.org/10.1071/RD12196

    Article  CAS  PubMed  Google Scholar 

  85. Schultze-Mosgau A, Katzur AC, Arora KK, Stojilkovic SS, Diedrich K, Ortmann O (2000) Characterization of calcium-mobilizing, purinergic P2Y(2) receptors in human ovarian cancer cells. Mol Hum Reprod 6(5):435–442

    Article  CAS  PubMed  Google Scholar 

  86. Choi KC, Tai CJ, Tzeng CR, Auersperg N, Leung PC (2003) Adenosine triphosphate activates mitogen-activated protein kinase in pre-neoplastic and neoplastic ovarian surface epithelial cells. Biol Reprod 68(1):309–315. https://doi.org/10.1095/biolreprod.102.006551

    Article  CAS  PubMed  Google Scholar 

  87. Martinez-Ramirez AS, Garay E, Garcia-Carranca A, Vazquez-Cuevas FG (2016) The P2RY2 receptor induces carcinoma cell migration and EMT through cross-talk with epidermal growth factor receptor. J Cell Biochem 117(4):1016–1026. https://doi.org/10.1002/jcb.25390

    Article  CAS  PubMed  Google Scholar 

  88. Hajiahmadi S, Panjehpour M, Aghaei M, Mousavi S (2015) Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines. Res Pharm Sci 10(1):43–51

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hajiahmadi S, Panjehpour M, Aghaei M, Shabani M (2015) Activation of A2b adenosine receptor regulates ovarian cancer cell growth: involvement of Bax/Bcl-2 and caspase-3. Biochem Cell Biol 93(4):321–329. https://doi.org/10.1139/bcb-2014-0117

    Article  CAS  PubMed  Google Scholar 

  90. Turcotte M, Spring K, Pommey S, Chouinard G, Cousineau I, George J, Chen GM, Gendoo DM, Haibe-Kains B, Karn T, Rahimi K, Le Page C, Provencher D, Mes-Masson AM, Stagg J (2015) CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res 75(21):4494–4503. https://doi.org/10.1158/0008-5472.CAN-14-3569

    Article  CAS  PubMed  Google Scholar 

  91. Gaudreau PO, Allard B, Turcotte M, Stagg J (2016) CD73-adenosine reduces immune responses and survival in ovarian cancer patients. Oncoimmunology 5(5):e1127496. https://doi.org/10.1080/2162402X.2015.1127496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hausler SF, Montalban del Barrio I, Strohschein J, Chandran PA, Engel JB, Honig A, Ossadnik M, Horn E, Fischer B, Krockenberger M, Heuer S, Seida AA, Junker M, Kneitz H, Kloor D, Klotz KN, Dietl J, Wischhusen J (2011) Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol Immunother 60(10):1405–1418. https://doi.org/10.1007/s00262-011-1040-4

    Article  CAS  PubMed  Google Scholar 

  93. Montalban Del Barrio I, Penski C, Schlahsa L, Stein RG, Diessner J, Wockel A, Dietl J, Lutz MB, Mittelbronn M, Wischhusen J, Hausler SFM (2016) Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages - a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer 4:49. https://doi.org/10.1186/s40425-016-0154-9

    Article  PubMed  PubMed Central  Google Scholar 

  94. Asif A, Khalid M, Manzoor S, Ahmad H, Rehman AU (2019) Role of purinergic receptors in hepatobiliary carcinoma in Pakistani population: an approach towards proinflammatory role of P2X4 and P2X7 receptors. Purinergic Signal 15(3):367–374. https://doi.org/10.1007/s11302-019-09675-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Manzoor S, Idrees M, Ashraf J, Mehmood A, Butt S, Fatima K, Akbar H, Rehaman IU, Qadri I (2011) Identification of ionotrophic purinergic receptors in Huh-7 cells and their response towards structural proteins of HCV genotype 3a. Virol J 8:431. https://doi.org/10.1186/1743-422X-8-431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Khalid M, Manzoor S, Ahmad H, Asif A, Bangash TA, Latif A, Jaleel S (2018) Purinoceptor expression in hepatocellular virus (HCV)-induced and non-HCV hepatocellular carcinoma: an insight into the proviral role of the P2X4 receptor. Mol Biol Rep 45(6):2625–2630. https://doi.org/10.1007/s11033-018-4432-0

    Article  CAS  PubMed  Google Scholar 

  97. Liu H, Liu W, Liu Z, Liu Y, Zhang W, Xu L, Xu J (2015) Prognostic value of purinergic P2X7 receptor expression in patients with hepatocellular carcinoma after curative resection. Tumour Biol 36(7):5039–5049. https://doi.org/10.1007/s13277-015-3155-2

    Article  CAS  PubMed  Google Scholar 

  98. Duan S, Yu J, Han Z, Cheng Z, Liang P (2016) Association between P2RX7 gene and hepatocellular carcinoma susceptibility: a case-control study in a Chinese Han population. Med Sci Monit 22:1916–1923. https://doi.org/10.12659/msm.895763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Maynard JP, Lee JS, Sohn BH, Yu X, Lopez-Terrada D, Finegold MJ, Goss JA, Thevananther S (2015) P2X3 purinergic receptor overexpression is associated with poor recurrence-free survival in hepatocellular carcinoma patients. Oncotarget 6(38):41162–41179. https://doi.org/10.18632/oncotarget.6240

    Article  PubMed  PubMed Central  Google Scholar 

  100. Xie R, Xu J, Wen G, Jin H, Liu X, Yang Y, Ji B, Jiang Y, Song P, Dong H, Tuo B (2014) The P2Y2 nucleotide receptor mediates the proliferation and migration of human hepatocellular carcinoma cells induced by ATP. J Biol Chem 289(27):19137–19149. https://doi.org/10.1074/jbc.M113.540047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schulien I, Hockenjos B, van Marck V, Ayata CK, Follo M, Thimme R, Hasselblatt P (2020) Extracellular ATP and purinergic P2Y2 receptor signaling promote liver tumorigenesis in mice by exacerbating DNA damage. Cancer Res 80(4):699–708. https://doi.org/10.1158/0008-5472.CAN-19-1909

    Article  CAS  PubMed  Google Scholar 

  102. Khalid M, Brisson L, Tariq M, Hao Y, Guibon R, Fromont G, Mortadza SAS, Mousawi F, Manzoor S, Roger S, Jiang LH (2017) Carcinoma-specific expression of P2Y11 receptor and its contribution in ATP-induced purinergic signalling and cell migration in human hepatocellular carcinoma cells. Oncotarget 8(23):37278–37290. https://doi.org/10.18632/oncotarget.16191

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shali S, Yu J, Zhang X, Wang X, Jin Y, Su M, Liao X, Yu J, Zhi X, Zhou P (2019) Ecto-5'-nucleotidase (CD73) is a potential target of hepatocellular carcinoma. J Cell Physiol 234(7):10248–10259. https://doi.org/10.1002/jcp.27694

    Article  CAS  PubMed  Google Scholar 

  104. Ma XL, Shen MN, Hu B, Wang BL, Yang WJ, Lv LH, Wang H, Zhou Y, Jin AL, Sun YF, Zhang CY, Qiu SJ, Pan BS, Zhou J, Fan J, Yang XR, Guo W (2019) CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110beta and predicts poor prognosis. J Hematol Oncol 12(1):37. https://doi.org/10.1186/s13045-019-0724-7

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L, Fishman P (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol 33(2):287–295

    CAS  PubMed  Google Scholar 

  106. Aquea G, Bresky G, Lancellotti D, Madariaga JA, Zaffiri V, Urzua U, Haberle S, Bernal G (2014) Increased expression of P2RY2, CD248 and EphB1 in gastric cancers from Chilean patients. Asian Pac J Cancer Prev 15(5):1931–1936

    Article  PubMed  Google Scholar 

  107. Hevia MJ, Castro P, Pinto-Irish K, Reyna-Jeldes M, Rodríguez-Tirado F, Robles-Planells C, Ramírez-Rivera S, Madariaga JA, Gutiérrez F, López J, Barra M, De La Fuente-Ortega E, Bernal G, Coddou C (2019) Differential effects of purinergic signaling in gastric cancer derived cells through P2Y and P2X receptors. Frontiers in Pharmacology in press. https://doi.org/10.3389/fphar.2019.00612

  108. Wan H, Xie R, Xu J, He J, Tang B, Liu Q, Wang S, Guo Y, Yang X, Dong TX, Carethers JM, Yang S, Dong H (2017) Anti-proliferative Effects of Nucleotides on Gastric Cancer via a Novel P2Y6/SOCE/Ca(2+)/beta-catenin Pathway. Sci Rep 7(1):2459. https://doi.org/10.1038/s41598-017-02562-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lili W, Yun L, Tingran W, Xia W, Yanlei S (2019) P2RX7 functions as a putative biomarker of gastric cancer and contributes to worse prognosis. Exp Biol Med (Maywood) 244(9):734–742. https://doi.org/10.1177/1535370219846492

    Article  CAS  Google Scholar 

  110. Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T (2004) Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol 67(10):2005–2011. https://doi.org/10.1016/j.bcp.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  111. Wang MX, Ren LM (2006) Growth inhibitory effect and apoptosis induced by extracellular ATP and adenosine on human gastric carcinoma cells: involvement of intracellular uptake of adenosine. Acta Pharmacol Sin 27(8):1085–1092. https://doi.org/10.1111/j.1745-7254.2006.00342.x

    Article  CAS  PubMed  Google Scholar 

  112. Shi L, Wu Z, Miao J, Du S, Ai S, Xu E, Feng M, Song J, Guan W (2019) Adenosine interaction with adenosine receptor A2a promotes gastric cancer metastasis by enhancing PI3K-AKT-mTOR signaling. Mol Biol Cell 30(19):2527–2534. https://doi.org/10.1091/mbc.E19-03-0136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Maaser K, Hopfner M, Kap H, Sutter AP, Barthel B, von Lampe B, Zeitz M, Scherubl H (2002) Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y(2)-receptors. Br J Cancer 86(4):636–644. https://doi.org/10.1038/sj.bjc.6600100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Santos AA Jr, Cappellari AR, de Marchi FO, Gehring MP, Zaparte A, Brandao CA, Lopes TG, da Silva VD, Pinto LFR, Savio LEB, Moreira-Souza ACA, Coutinho-Silva R, Paccez JD, Zerbini LF, Morrone FB (2017) Potential role of P2X7R in esophageal squamous cell carcinoma proliferation. Purinergic Signal 13(3):279–292. https://doi.org/10.1007/s11302-017-9559-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hopfner M, Maaser K, Barthel B, von Lampe B, Hanski C, Riecken EO, Zeitz M, Scherubl H (2001) Growth inhibition and apoptosis induced by P2Y2 receptors in human colorectal carcinoma cells: involvement of intracellular calcium and cyclic adenosine monophosphate. Int J Color Dis 16(3):154–166. https://doi.org/10.1007/s003840100302

    Article  CAS  Google Scholar 

  116. Nylund G, Hultman L, Nordgren S, Delbro DS (2007) P2Y2- and P2Y4 purinergic receptors are over-expressed in human colon cancer. Auton Autacoid Pharmacol 27(2):79–84. https://doi.org/10.1111/j.1474-8673.2007.00389.x

    Article  CAS  PubMed  Google Scholar 

  117. Limami Y, Pinon A, Leger DY, Pinault E, Delage C, Beneytout JL, Simon A, Liagre B (2012) The P2Y2/Src/p38/COX-2 pathway is involved in the resistance to ursolic acid-induced apoptosis in colorectal and prostate cancer cells. Biochimie 94(8):1754–1763. https://doi.org/10.1016/j.biochi.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  118. Placet M, Arguin G, Molle CM, Babeu JP, Jones C, Carrier JC, Robaye B, Geha S, Boudreau F, Gendron FP (2018) The G protein-coupled P2Y(6) receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochim Biophys Acta Mol basis Dis 1864(5 Pt A):1539–1551. https://doi.org/10.1016/j.bbadis.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  119. Qian F, Xiao J, Hu B, Sun N, Yin W, Zhu J (2017) High expression of P2X7R is an independent postoperative indicator of poor prognosis in colorectal cancer. Hum Pathol 64:61–68. https://doi.org/10.1016/j.humpath.2017.03.019

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Y, Ding J, Wang L (2019) The role of P2X7 receptor in prognosis and metastasis of colorectal cancer. Adv Med Sci 64(2):388–394. https://doi.org/10.1016/j.advms.2019.05.002

    Article  PubMed  Google Scholar 

  121. Ohana G, Bar-Yehuda S, Arich A, Madi L, Dreznick Z, Rath-Wolfson L, Silberman D, Slosman G, Fishman P (2003) Inhibition of primary colon carcinoma growth and liver metastasis by the A3 adenosine receptor agonist CF101. Br J Cancer 89(8):1552–1558. https://doi.org/10.1038/sj.bjc.6601315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sakowicz-Burkiewicz M, Kitowska A, Grden M, Maciejewska I, Szutowicz A, Pawelczyk T (2013) Differential effect of adenosine receptors on growth of human colon cancer HCT 116 and HT-29 cell lines. Arch Biochem Biophys 533(1-2):47–54. https://doi.org/10.1016/j.abb.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  123. Kunzli BM, Berberat PO, Giese T, Csizmadia E, Kaczmarek E, Baker C, Halaceli I, Buchler MW, Friess H, Robson SC (2007) Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease. Am J Physiol Gastrointest Liver Physiol 292(1):G223–G230. https://doi.org/10.1152/ajpgi.00259.2006

    Article  CAS  PubMed  Google Scholar 

  124. Choi JH, Ji YG, Lee DH (2013) Uridine triphosphate increases proliferation of human cancerous pancreatic duct epithelial cells by activating P2Y2 receptor. Pancreas 42(4):680–686. https://doi.org/10.1097/MPA.0b013e318271bb4b

    Article  CAS  PubMed  Google Scholar 

  125. Hu LP, Zhang XX, Jiang SH, Tao LY, Li Q, Zhu LL, Yang MW, Huo YM, Jiang YS, Tian GA, Cao XY, Zhang YL, Yang Q, Yang XM, Wang YH, Li J, Xiao GG, Sun YW, Zhang ZG (2019) Targeting purinergic receptor P2Y2 prevents the growth of pancreatic ductal adenocarcinoma by inhibiting cancer cell glycolysis. Clin Cancer Res 25(4):1318–1330. https://doi.org/10.1158/1078-0432.CCR-18-2297

    Article  CAS  PubMed  Google Scholar 

  126. Haanes KA, Schwab A, Novak I (2012) The P2X7 receptor supports both life and death in fibrogenic pancreatic stellate cells. PLoS One 7(12):e51164. https://doi.org/10.1371/journal.pone.0051164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I (2016) Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer 139(11):2540–2552. https://doi.org/10.1002/ijc.30380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mohammed A, Janakiram NB, Madka V, Pathuri G, Li Q, Ritchie R, Biddick L, Kutche H, Zhang Y, Singh A, Gali H, Lightfoot S, Steele VE, Suen CS, Rao CV (2017) Lack of chemopreventive effects of P2X7R inhibitors against pancreatic cancer. Oncotarget 8(58):97822–97834. https://doi.org/10.18632/oncotarget.22085

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389(10066):299–311. https://doi.org/10.1016/S0140-6736(16)30958-8

    Article  CAS  PubMed  Google Scholar 

  130. Tatur S, Kreda S, Lazarowski E, Grygorczyk R (2008) Calcium-dependent release of adenosine and uridine nucleotides from A549 cells. Purinergic Signal 4(2):139–146. https://doi.org/10.1007/s11302-007-9059-x

    Article  CAS  PubMed  Google Scholar 

  131. Agteresch HJ, Burgers SA, van der Gaast A, Wilson JH, Dagnelie PC (2003) Randomized clinical trial of adenosine 5'-triphosphate on tumor growth and survival in advanced lung cancer patients. Anti-Cancer Drugs 14(8):639–644. https://doi.org/10.1097/00001813-200309000-00009

    Article  CAS  PubMed  Google Scholar 

  132. Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2006) Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation. Anticancer Res 26(1A):43–47

    CAS  PubMed  Google Scholar 

  133. Fang WG, Tian XX (2017) Identification of a new pro-invasion factor in tumor microenvironment: progress in function and mechanism of extracellular ATP. Beijing Da Xue Xue Bao 49(2):188–195

    CAS  PubMed  Google Scholar 

  134. Humphreys BD, Rice J, Kertesy SB, Dubyak GR (2000) Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J Biol Chem 275(35):26792–26798. https://doi.org/10.1074/jbc.M002770200

    Article  CAS  PubMed  Google Scholar 

  135. De Marchi E, Orioli E, Dal Ben D, Adinolfi E (2016) P2X7 receptor as a therapeutic target. Adv Protein Chem Struct Biol 104:39–79. https://doi.org/10.1016/bs.apcsb.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  136. Park JH, Williams DR, Lee JH, Lee SD, Lee JH, Ko H, Lee GE, Kim S, Lee JM, Abdelrahman A, Muller CE, Jung DW, Kim YC (2016) Potent suppressive effects of 1-piperidinylimidazole based novel P2X7 receptor antagonists on cancer cell migration and invasion. J Med Chem 59(16):7410–7430. https://doi.org/10.1021/acs.jmedchem.5b01690

    Article  CAS  PubMed  Google Scholar 

  137. Boldrini L, Giordano M, Ali G, Melfi F, Romano G, Lucchi M, Fontanini G (2015) P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value. Oncol Lett 9(1):449–453. https://doi.org/10.3892/ol.2014.2620

    Article  PubMed  Google Scholar 

  138. Boldrini L, Giordano M, Ali G, Servadio A, Pelliccioni S, Niccoli C, Mussi A, Fontanini G (2014) P2X7 protein expression and polymorphism in non-small cell lung cancer (NSCLC). J Negat Results Biomed 13:16. https://doi.org/10.1186/1477-5751-13-16

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ma J, Li W, Chai Q, Tan X, Zhang K (2019) Correlation of P2RX7 gene rs1718125 polymorphism with postoperative fentanyl analgesia in patients with lung cancer. Medicine (Baltimore) 98(7):e14445. https://doi.org/10.1097/MD.0000000000014445

    Article  CAS  Google Scholar 

  140. Benzaquen J, Dit Hreich SJ, Heeke S, Juhel T, Lalvee S, Bauwens S, Saccani S, Lenormand P, Hofman V, Butori M, Leroy S, Berthet JP, Marquette CH, Hofman P, Vouret-Craviari V (2020) P2RX7B is a new theranostic marker for lung adenocarcinoma patients. Theranostics 10(24):10849–10860. https://doi.org/10.7150/thno.48229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Douguet L, Janho Dit Hreich S, Benzaquen J, Seguin L, Juhel T, Dezitter X, Duranton C, Ryffel B, Kanellopoulos J, Delarasse C, Renault N, Furman C, Homerin G, Feral C, Cherfils-Vicini J, Millet R, Adriouch S, Ghinet A, Hofman P, Vouret-Craviari V (2021) A small-molecule P2RX7 activator promotes anti-tumor immune responses and sensitizes lung tumor to immunotherapy. Nat Commun 12(1):653. https://doi.org/10.1038/s41467-021-20912-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Heng YJ, Lester SC, Tse GM, Factor RE, Allison KH, Collins LC, Chen YY, Jensen KC, Johnson NB, Jeong JC, Punjabi R, Shin SJ, Singh K, Krings G, Eberhard DA, Tan PH, Korski K, Waldman FM, Gutman DA, Sanders M, Reis-Filho JS, Flanagan SR, Gendoo DM, Chen GM, Haibe-Kains B, Ciriello G, Hoadley KA, Perou CM, Beck AH (2017) The molecular basis of breast cancer pathological phenotypes. J Pathol 241(3):375–391. https://doi.org/10.1002/path.4847

    Article  CAS  PubMed  Google Scholar 

  143. Rakha EA, Green AR (2017) Molecular classification of breast cancer: what the pathologist needs to know. Pathology 49(2):111–119. https://doi.org/10.1016/j.pathol.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  144. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28(10):1684–1691. https://doi.org/10.1200/JCO.2009.24.9284

    Article  PubMed  Google Scholar 

  145. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059. https://doi.org/10.1038/nm1622

    Article  CAS  PubMed  Google Scholar 

  146. De Marchi E, Orioli E, Pegoraro A, Sangaletti S, Portararo P, Curti A, Colombo MP, Di Virgilio F, Adinolfi E (2019) The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene 38(19):3636–3650. https://doi.org/10.1038/s41388-019-0684-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lecciso M, Ocadlikova D, Sangaletti S, Trabanelli S, De Marchi E, Orioli E, Pegoraro A, Portararo P, Jandus C, Bontadini A, Redavid A, Salvestrini V, Romero P, Colombo MP, Di Virgilio F, Cavo M, Adinolfi E, Curti A (2017) ATP release from chemotherapy-treated dying leukemia cells elicits an immune suppressive effect by increasing regulatory T cells and tolerogenic dendritic cells. Front Immunol 8:1918. https://doi.org/10.3389/fimmu.2017.01918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Amoroso F, Capece M, Rotondo A, Cangelosi D, Ferracin M, Franceschini A, Raffaghello L, Pistoia V, Varesio L, Adinolfi E (2015) The P2X7 receptor is a key modulator of the PI3K/GSK3beta/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 34(41):5240–5251. https://doi.org/10.1038/onc.2014.444

    Article  CAS  PubMed  Google Scholar 

  149. Jin H, Eun SY, Lee JS, Park SW, Lee JH, Chang KC, Kim HJ (2014) P2Y2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res 16(5):R77. https://doi.org/10.1186/bcr3694

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jin H, Kim HJ (2020) NLRC4, ASC and caspase-1 are inflammasome components that are mediated by P2Y2R activation in breast cancer cells. Int J Mol Sci 21(9). https://doi.org/10.3390/ijms21093337

  151. Allard B, Beavis PA, Darcy PK, Stagg J (2016) Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol 29:7–16. https://doi.org/10.1016/j.coph.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  152. Campos-Contreras ADR, Diaz-Munoz M, Vazquez-Cuevas FG (2020) Purinergic signaling in the hallmarks of cancer. Cells 9(7). https://doi.org/10.3390/cells9071612

  153. Panjehpour M, Castro M, Klotz KN (2005) Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2+ signal. Br J Pharmacol 145(2):211–218. https://doi.org/10.1038/sj.bjp.0706180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Koussemou M, Lorenz K, Klotz KN (2018) The A2B adenosine receptor in MDA-MB-231 breast cancer cells diminishes ERK1/2 phosphorylation by activation of MAPK-phosphatase-1. PLoS One 13(8):e0202914. https://doi.org/10.1371/journal.pone.0202914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cekic C, Sag D, Li Y, Theodorescu D, Strieter RM, Linden J (2012) Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J Immunol 188(1):198–205. https://doi.org/10.4049/jimmunol.1101845

    Article  CAS  PubMed  Google Scholar 

  156. Yan J, Li XY, Roman Aguilera A, Xiao C, Jacoberger-Foissac C, Nowlan B, Robson SC, Beers C, Moesta AK, Geetha N, Teng MWL, Smyth MJ (2020) Control of metastases via myeloid CD39 and NK cell effector function. Cancer Immunol Res 8(3):356–367. https://doi.org/10.1158/2326-6066.CIR-19-0749

    Article  CAS  PubMed  Google Scholar 

  157. Li XY, Moesta AK, Xiao C, Nakamura K, Casey M, Zhang H, Madore J, Lepletier A, Aguilera AR, Sundarrajan A, Jacoberger-Foissac C, Wong C, Dela Cruz T, Welch M, Lerner AG, Spatola BN, Soros VB, Corbin J, Anderson AC, Effern M, Holzel M, Robson SC, Johnston RL, Waddell N, Smith C, Bald T, Geetha N, Beers C, Teng MWL, Smyth MJ (2019) Targeting CD39 in cancer reveals an extracellular ATP- and inflammasome-driven tumor immunity. Cancer Discov 9(12):1754–1773. https://doi.org/10.1158/2159-8290.CD-19-0541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Allard B, Pommey S, Smyth MJ, Stagg J (2013) Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19(20):5626–5635. https://doi.org/10.1158/1078-0432.CCR-13-0545

    Article  CAS  PubMed  Google Scholar 

  159. Ghalamfarsa G, Rastegari A, Atyabi F, Hassannia H, Hojjat-Farsangi M, Ghanbari A, Anvari E, Mohammadi J, Azizi G, Masjedi A, Yousefi M, Yousefi B, Hadjati J, Jadidi-Niaragh F (2018) Anti-angiogenic effects of CD73-specific siRNA-loaded nanoparticles in breast cancer-bearing mice. J Cell Physiol 233(10):7165–7177. https://doi.org/10.1002/jcp.26743

    Article  CAS  PubMed  Google Scholar 

  160. Yu J, Wang X, Lu Q, Wang J, Li L, Liao X, Zhu W, Lv L, Zhi X, Yu J, Jin Y, Zou Q, Ou Z, Liu X, Zhou P (2018) Extracellular 5'-nucleotidase (CD73) promotes human breast cancer cells growth through AKT/GSK-3beta/beta-catenin/cyclinD1 signaling pathway. Int J Cancer 142(5):959–967. https://doi.org/10.1002/ijc.31112

    Article  CAS  PubMed  Google Scholar 

  161. Buisseret L, Pommey S, Allard B, Garaud S, Bergeron M, Cousineau I, Ameye L, Bareche Y, Paesmans M, Crown JPA, Di Leo A, Loi S, Piccart-Gebhart M, Willard-Gallo K, Sotiriou C, Stagg J (2018) Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial. Ann Oncol 29(4):1056–1062. https://doi.org/10.1093/annonc/mdx730

    Article  CAS  PubMed  Google Scholar 

  162. de Araujo JB, Kerkhoff VV, de Oliveira Maciel SFV, de Resende ESDT (2021) Targeting the purinergic pathway in breast cancer and its therapeutic applications. Purinergic Signal. https://doi.org/10.1007/s11302-020-09760-9

  163. Raut JR, Guan Z, Schrotz-King P, Brenner H (2020) Fecal DNA methylation markers for detecting stages of colorectal cancer and its precursors: a systematic review. Clin Epigenetics 12(1):122. https://doi.org/10.1186/s13148-020-00904-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Burnstock G (2014) Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 10(1):3–50. https://doi.org/10.1007/s11302-013-9397-9

    Article  CAS  PubMed  Google Scholar 

  165. Wan HX, Hu JH, Xie R, Yang SM, Dong H (2016) Important roles of P2Y receptors in the inflammation and cancer of digestive system. Oncotarget 7(19):28736–28747. https://doi.org/10.18632/oncotarget.7518

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zhang WLC, Huang C, Pu F, Zhu J, Zhu Z (2021) PI3K/Akt/GSK-3β signal pathway is involved in P2X7 receptor-induced proliferation and EMT of colorectal cancer cells. Eur J Pharmacol:174041. https://doi.org/10.1016/j.ejphar.2021.174041

  167. Velazquez-Miranda E, Diaz-Munoz M, Vazquez-Cuevas FG (2019) Purinergic signaling in hepatic disease. Purinergic Signal 15(4):477–489. https://doi.org/10.1007/s11302-019-09680-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Horstman DA, Tennes KA, Putney JW Jr (1986) ATP-induced calcium mobilization and inositol 1,4,5-triphosphate formation in H-35 hepatoma cells. FEBS Lett 204(2):189–192. https://doi.org/10.1016/0014-5793(86)80809-2

    Article  CAS  PubMed  Google Scholar 

  169. Emmett DS, Feranchak A, Kilic G, Puljak L, Miller B, Dolovcak S, McWilliams R, Doctor RB, Fitz JG (2008) Characterization of ionotrophic purinergic receptors in hepatocytes. Hepatology 47(2):698–705. https://doi.org/10.1002/hep.22035

    Article  CAS  PubMed  Google Scholar 

  170. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  171. Subhash VV, Yeo MS, Tan WL, Yong WP (2015) Strategies and advancements in harnessing the immune system for gastric cancer immunotherapy. J Immunol Res 2015:308574. https://doi.org/10.1155/2015/308574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N (2014) Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur J Cancer 50(7):1330–1344. https://doi.org/10.1016/j.ejca.2014.01.029

    Article  PubMed  Google Scholar 

  173. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F (2020) Gastric cancer. Lancet 396(10251):635–648. https://doi.org/10.1016/S0140-6736(20)31288-5

    Article  CAS  PubMed  Google Scholar 

  174. Yuan W, Wang Z, Li J, Li D, Liu D, Bai G, Walsh MP, Gui Y, Zheng XL (2013) Uridine adenosine tetraphosphate induces contraction of circular and longitudinal gastric smooth muscle by distinct signaling pathways. IUBMB Life 65(7):623–632. https://doi.org/10.1002/iub.1171

    Article  CAS  PubMed  Google Scholar 

  175. Ahn SC, Xu WX, So I, Kim KW, Kang TM (1995) Effects of purinergic agonists on mechanical and electrical activities of gastric smooth muscle of guinea-pig. J Smooth Muscle Res 31(6):407–410

    CAS  PubMed  Google Scholar 

  176. Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs-part B: prostate and bladder tumours. Eur Urol 70(1):106–119. https://doi.org/10.1016/j.eururo.2016.02.028

    Article  PubMed  Google Scholar 

  177. Fang WG, Pirnia F, Bang YJ, Myers CE, Trepel JB (1992) P2-purinergic receptor agonists inhibit the growth of androgen-independent prostate carcinoma cells. J Clin Invest 89(1):191–196. https://doi.org/10.1172/JCI115562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Calvert RC, Shabbir M, Thompson CS, Mikhailidis DP, Morgan RJ, Burnstock G (2004) Immunocytochemical and pharmacological characterisation of P2-purinoceptor-mediated cell growth and death in PC-3 hormone refractory prostate cancer cells. Anticancer Res 24(5A):2853–2859

    CAS  PubMed  Google Scholar 

  179. Shabbir M, Thompson C, Jarmulowiczc M, Mikhailidis D, Burnstock G (2008) Effect of extracellular ATP on the growth of hormone-refractory prostate cancer in vivo. BJU Int 102(1):108–112

    Article  PubMed  Google Scholar 

  180. Chen L, He HY, Li HM, Zheng J, Heng WJ, You JF, Fang WG (2004) ERK1/2 and p38 pathways are required for P2Y receptor-mediated prostate cancer invasion. Cancer Lett 215(2):239–247. https://doi.org/10.1016/j.canlet.2004.05.023

    Article  CAS  PubMed  Google Scholar 

  181. Minelli A, Bellezza I, Tucci A, Rambotti MG, Conte C, Culig Z (2009) Differential involvement of reactive oxygen species and nucleoside transporters in cytotoxicity induced by two adenosine analogues in human prostate cancer cells. Prostate 69(5):538–547. https://doi.org/10.1002/pros.20900

    Article  CAS  PubMed  Google Scholar 

  182. Virtanen SS, Kukkonen-Macchi A, Vainio M, Elima K, Harkonen PL, Jalkanen S, Yegutkin GG (2014) Adenosine inhibits tumor cell invasion via receptor-independent mechanisms. Mol Cancer Res 12(12):1863–1874. https://doi.org/10.1158/1541-7786.MCR-14-0302-T

    Article  CAS  PubMed  Google Scholar 

  183. Gardani CFF, Cappellari AR, de Souza JB, da Silva BT, Engroff P, Moritz CEJ, Scholl JN, Battastini AMO, Figueiro F, Morrone FB (2019) Hydrolysis of ATP, ADP, and AMP is increased in blood plasma of prostate cancer patients. Purinergic Signal 15(1):95–105. https://doi.org/10.1007/s11302-018-9642-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Schiffman M, Wentzensen N, Wacholder S, Kinney W, Gage JC, Castle PE (2011) Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer Inst 103(5):368–383. https://doi.org/10.1093/jnci/djq562

    Article  PubMed  PubMed Central  Google Scholar 

  185. Gendaszewska-Darmach E, Szustak M (2016) Thymidine 5'-O-monophosphorothioate induces HeLa cell migration by activation of the P2Y6 receptor. Purinergic Signal 12(2):199–209. https://doi.org/10.1007/s11302-015-9492-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Buvinic S, Bravo-Zehnder M, Boyer JL, Huidobro-Toro JP, Gonzalez A (2007) Nucleotide P2Y1 receptor regulates EGF receptor mitogenic signaling and expression in epithelial cells. J Cell Sci 120(Pt 24):4289–4301. https://doi.org/10.1242/jcs.03490

    Article  CAS  PubMed  Google Scholar 

  187. Mello Pde A, Filippi-Chiela EC, Nascimento J, Beckenkamp A, Santana DB, Kipper F, Casali EA, Nejar Bruno A, Paccez JD, Zerbini LF, Wink MR, Lenz G, Buffon A (2014) Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells. Mol Biol Cell 25(19):2905–2918. https://doi.org/10.1091/mbc.E14-01-0042

    Article  CAS  PubMed  Google Scholar 

  188. Beckenkamp A, Santana DB, Bruno AN, Calil LN, Casali EA, Paccez JD, Zerbini LF, Lenz G, Wink MR, Buffon A (2014) Ectonucleotidase expression profile and activity in human cervical cancer cell lines. Biochem Cell Biol 92(2):95–104. https://doi.org/10.1139/bcb-2013-0051

    Article  CAS  PubMed  Google Scholar 

  189. Gao ZW, Wang HP, Dong K, Lin F, Wang X, Zhang HZ (2016) Adenosine inhibits migration, invasion and induces apoptosis of human cervical cancer cells. Neoplasma 63(2):201–207. https://doi.org/10.4149/204_150723N407

    Article  CAS  PubMed  Google Scholar 

  190. Johann PD, Muller I (2015) Multipotent mesenchymal stromal cells: possible culprits in solid tumors? Stem Cells Int 2015:914632. https://doi.org/10.1155/2015/914632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. De Lourdes M-GM, Garcia-Rocha R, Morales-Ramirez O, Montesinos JJ, Weiss-Steider B, Hernandez-Montes J, Avila-Ibarra LR, Don-Lopez CA, Velasco-Velazquez MA, Gutierrez-Serrano V, Monroy-Garcia A (2016) Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions. J Transl Med 14(1):302. https://doi.org/10.1186/s12967-016-1057-8

    Article  CAS  Google Scholar 

  192. Pfaffenzeller MS, Franciosi MLM, Cardoso AM (2020) Purinergic signaling and tumor microenvironment in cervical Cancer. Purinergic Signal 16(1):123–135. https://doi.org/10.1007/s11302-020-09693-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Giannuzzo A, Pedersen SF, Novak I (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 14:203. https://doi.org/10.1186/s12943-015-0472-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Choi JH, Ji YG, Ko JJ, Cho HJ, Lee DH (2018) Activating P2X7 receptors increases proliferation of human pancreatic cancer cells via ERK1/2 and JNK. Pancreas 47(5):643–651. https://doi.org/10.1097/MPA.0000000000001055

    Article  CAS  PubMed  Google Scholar 

  195. Freeman M (2006) Neuroendocrine control of the ovarian cycle of the rat. In: Neill J, Knobil, Neill's (eds) Physiology of Reproduction 3rd edAcademic Press, pp 2328–2388

    Google Scholar 

  196. Lheureux S, Gourley C, Vergote I, Oza AM (2019) Epithelial ovarian cancer. Lancet 393(10177):1240–1253. https://doi.org/10.1016/S0140-6736(18)32552-2

    Article  PubMed  Google Scholar 

  197. Kuhn E, Kurman RJ, Shih IM (2012) Ovarian cancer is an imported disease: fact or fiction? Curr Obstet Gynecol Rep 1(1):1–9. https://doi.org/10.1007/s13669-011-0004-1

    Article  PubMed  PubMed Central  Google Scholar 

  198. Martinez-Ramirez AS, Vazquez-Cuevas FG (2015) Purinergic signaling in the ovary. Mol Reprod Dev 82(11):839–848. https://doi.org/10.1002/mrd.22537

    Article  CAS  PubMed  Google Scholar 

  199. Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M, Pasdar A (2020) Current insights into the metastasis of epithelial ovarian cancer—hopes and hurdles. Cell Oncol (Dordr) 43(4):515–538. https://doi.org/10.1007/s13402-020-00513-9

    Article  Google Scholar 

  200. Batra S, Fadeel I (1994) Release of intracellular calcium and stimulation of cell growth by ATP and histamine in human ovarian cancer cells (SKOV-3). Cancer Lett 77(1):57–63. https://doi.org/10.1016/0304-3835(94)90348-4

    Article  CAS  PubMed  Google Scholar 

  201. Popper LD, Batra S (1993) Calcium mobilization and cell proliferation activated by extracellular ATP in human ovarian tumour cells. Cell Calcium 14(3):209–218

    Article  CAS  PubMed  Google Scholar 

  202. Martinez-Ramirez AS, Diaz-Munoz M, Battastini AM, Campos-Contreras A, Olvera A, Bergamin L, Glaser T, Jacintho Moritz CE, Ulrich H, Vazquez-Cuevas FG (2017) Cellular migration ability is modulated by extracellular purines in ovarian carcinoma SKOV-3 Cells. J Cell Biochem 118(12):4468–4478. https://doi.org/10.1002/jcb.26104

    Article  CAS  PubMed  Google Scholar 

  203. Vazquez-Cuevas FG, Martinez-Ramirez AS, Robles-Martinez L, Garay E, Garcia-Carranca A, Perez-Montiel D, Castaneda-Garcia C, Arellano RO (2014) Paracrine stimulation of P2X7 receptor by ATP activates a proliferative pathway in ovarian carcinoma cells. J Cell Biochem 115(11):1955–1966. https://doi.org/10.1002/jcb.24867

    Article  CAS  PubMed  Google Scholar 

  204. Sureechatchaiyan P, Hamacher A, Brockmann N, Stork B, Kassack MU (2018) Adenosine enhances cisplatin sensitivity in human ovarian cancer cells. Purinergic Signal 14(4):395–408. https://doi.org/10.1007/s11302-018-9622-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hausler SF, Del Barrio IM, Diessner J, Stein RG, Strohschein J, Honig A, Dietl J, Wischhusen J (2014) Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res 6(2):129–139

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica-UNAM (PAPIIT-UNAM) #IN202620 to F.G.V.-C., #IN202121 to M.D.-M.; Consejo Nacional de Ciencia y Tercnología (CONACYT-México) #284-557 to M.D.M.; Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT-Chile) Regular Grant # 1161490, FONDEQUIP-Chile EQM140100; and Millennium Nucleus for the Study of Pain (MiNuSPain) to C.C. MiNuSPain is a Millennium Nucleus supported by the Millennium Science Initiative of the Ministry of Science, Technology, Knowledge and Innovation (Chile). We are grateful to Jessica González Norris for proofreading and to Biol. Jazmín Vázquez-Méndez for the art in Fig. 1.

Code availability

Not applicable.

Funding

PAPIIT-UNAM #IN202620 and #IN202121; CONACYT#284-557; FONDECYT# 1161490, FONDEQUIP EQM140100 and MiNuSPain, MiNuSPain is a Millennium Nucleus supported by the Millennium Science Initiative of the Ministry of Science, Technology, Knowledge and Innovation (Chile).

Author information

Authors and Affiliations

Authors

Contributions

C.C. and F.G. V. C, conceived the paper. All the authors wrote and reviewed the paper.

Corresponding authors

Correspondence to C. Coddou or F. G. Vázquez-Cuevas.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors are in agreement with publish this paper.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyna-Jeldes, M., Díaz-Muñoz, M., Madariaga, J.A. et al. Autocrine and paracrine purinergic signaling in the most lethal types of cancer. Purinergic Signalling 17, 345–370 (2021). https://doi.org/10.1007/s11302-021-09785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09785-8

Keywords

Navigation