Skip to main content

Advertisement

Log in

Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular nucleotides, such as ATP, are released from cells and play roles in various physiological and pathological processes through activation of P2 receptors. Here, we show that autocrine signaling through release of ATP and activation of P2X7 receptor influences migration of human lung cancer cells. Release of ATP was induced by stimulation with TGF-β1, which is a potent inducer of cell migration, in human lung cancer H292 cells, but not in noncancerous BEAS-2B cells. Treatment of H292 cells with a specific antagonist of P2X7 receptor resulted in suppression of TGF-β1-induced migration. PC-9 human lung cancer cells released a large amount of ATP under standard cell culture conditions, and P2X7 receptor-dependent dye uptake was observed even in the absence of exogenous ligand, suggesting constitutive activation of P2X7 receptor in this cell line. PC-9 cells showed high motile activity, which was inhibited by treatment with ecto-nucleotidase and P2X7 receptor antagonists, whereas a P2X7 receptor agonist enhanced migration. PC-9 cells also harbor a constitutively active mutation in epidermal growth factor receptor (EGFR). Treatment with EGFR tyrosine kinase inhibitor AG1478 suppressed both cell migration and P2X7 receptor expression in PC-9 cells. Compared to control PC-9 cells, cells treated with P2X7 antagonist exhibited broadened lamellipodia around the cell periphery, while AG1478-treated cells lacked lamellipodia. These results indicate that P2X7-mediated signaling and EGFR signaling may regulate migration of PC-9 cells through distinct mechanisms. We propose that autocrine ATP-P2X7 signaling is involved in migration of human lung cancer cells through regulation of actin cytoskeleton rearrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Go C, Li P, Wang XJ (1999) Blocking transforming growth factor beta signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer Res 59:2861–2868

    CAS  PubMed  Google Scholar 

  2. Mumm JB, Oft M (2008) Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene 27:5913–5919

    Article  CAS  PubMed  Google Scholar 

  3. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor beta signaling impairs neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A 100:8430–8435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wendt MK, Allington TM, Schiemann WP (2009) Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 5:1145–1168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulator of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  CAS  PubMed  Google Scholar 

  6. Hattori F, Ohshima Y, Seki S, Tsukimoto M, Sato M, Takenouchi T, Suzuki A, Takai E, Kitani H, Harada H, Kojima S (2012) Feasibility study of B16 melanoma therapy using oxidized ATP to target purinergic receptor P2X7. Eur J Pharmacol 695:20–26

    Article  CAS  PubMed  Google Scholar 

  7. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3:e2599

    Article  PubMed Central  PubMed  Google Scholar 

  8. Burnstock G (2009) Purinergic signalling: past, present and future. Braz J Med Biol Res 42:3–8

    Article  CAS  PubMed  Google Scholar 

  9. Burnstock G, Di Virgilio F (2013) Purinergic signalling and cancer. Purinergic Signal 9:491–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgiilio F (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72:2957–2969

    Article  CAS  PubMed  Google Scholar 

  11. Solini A, Cuccato S, Ferrari D, Santini E, Gulinelli S, Callegari MG, Dardano A, Faviana P, Madec S, Di Virgilio F, Monzani F (2008) Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? Endocrinology 149:389–396

    Article  CAS  PubMed  Google Scholar 

  12. Raffaghello L, Chiozzi P, Falzoni S, Di Virgilio F, Pistoia V (2006) The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. Cancer Res 66:907–914

    Article  CAS  PubMed  Google Scholar 

  13. Greig AV, Linger C, Healy V, Lim P, Clayton E, Rustin MH, McGrouther DA, Burnstock G (2003) Expression of purinergic receptors in nonmelanoma skin cancers and their functional roles in A431 cells. J Invest Dermatol 121:315–327

    Article  CAS  PubMed  Google Scholar 

  14. Slater M, Danieletto S, Pooley M, Cheng Teh L, Gidley-Baird A, Barden JA (2004) Differentiation between cancerous and normal hyperplastic lobules in breast lesions. Breast Cancer Res Treat 83:1–10

    Article  PubMed  Google Scholar 

  15. Seki S, Tsukimoto M, Suzuki A, Hattori F, Takai E, Ohshima Y, Kojima S (2012) Anti-angiogenic effect of P2X7 receptor antagonist oxidized ATP as a mechanism of anti-tumor growth. Pharmaceut Anal Acta 3:190

    Article  Google Scholar 

  16. Jelassi B, Chantome A, Alcaraz-Perez F, Baroja-Mazo A, Cayuela ML, Pelegrin P, Surprenant A, Roger S (2011) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30:2108–2122

    Article  CAS  PubMed  Google Scholar 

  17. Takai E, Tsukimoto M, Harada H, Sawada K, Moriyama Y, Kojima S (2012) Autocrine regulation of TGF-β1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells. J Cell Sci 125:5051–5060

    Article  CAS  PubMed  Google Scholar 

  18. Reddel RR, Ke Y, Gerwin BI, McMenamin MG, Lechner JF, Su RT, Brash DE, Park JB, Rhim JS, Harris CC (1988) Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res 48:1904–1909

    CAS  PubMed  Google Scholar 

  19. Bloemen PG, van den Tweel MC, Henricks PA, Engels F, Wagenaar SS, Rutten AA, Nijkamp FP (1993) Expression and modulation of adhesion molecules on human bronchial epithelial cells. Am J Respir Cell Mol Biol 9:586–593

    Article  CAS  PubMed  Google Scholar 

  20. Arao T, Fukumoto H, Takeda M, Tamura T, Saijo N, Nishio K (2004) Small in-frame deletion in the epidermal growth factor receptor as a target for ZD6474. Cancer Res 64:9101–9104

    Article  CAS  PubMed  Google Scholar 

  21. Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1987) ATP4- permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262:8884–8888

    CAS  PubMed  Google Scholar 

  22. Li X, Qi X, Zhou L, Fu W, Abdul-Karim FW, Maclennan G, Gorodeski GI (2009) P2X(7) receptor expression is decreased in epithelial cancer cells of ectodermal, uro-genital sinus, and distal paramesonephric duct origin. Purinergic Signal 5:351–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chadet S, Jelassi B, Wannous R, Angoulvant D, Chevalier S, Besson P, Roger S (2014) The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway. Carcinogenesis published online 3 Jan 2014

  24. Hocevar BA, Brown TL, Howe PH (1999) TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18:1345–1356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, Noro R, Yoshimura A, Cai L, Gemma A (2012) MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol 41:869–875

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Lauand C, Rezende-Teixeira P, Cortez BA, Niero EL, Machado-Santelli GM (2013) Independent of ErbB1 gene copy number, EGF stimulates migration but is not associated with cell proliferation in non-small cell lung cancer. Cancer Cell Int 13:38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  CAS  PubMed  Google Scholar 

  28. Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114:2713–2722

    CAS  PubMed  Google Scholar 

  29. Rottner K, Hall A, Small JV (1999) Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 9:640–648

    Article  CAS  PubMed  Google Scholar 

  30. Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8:23

    Article  PubMed Central  PubMed  Google Scholar 

  31. Patel V, Rosenfeldt HM, Lyons R, Servitja JM, Bustelo XR, Siroff M, Gutkind JS (2007) Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. Carcinogenesis 28:1145–1152

    Article  CAS  PubMed  Google Scholar 

  32. Morelli A, Chiozzi P, Chiesa A, Ferrari D, Sanz JM, Falzoni S, Pinton P, Rizzuto R, Olson MF, Di Virgilio F (2003) Extracellular ATP causes ROCK I-dependent bleb formation in P2X7-transfected HEK293 cells. Mol Biol Cell 14:2655–2664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pfeiffer ZA, Aga M, Prabhu U, Watters JJ, Hall DJ, Bertics PJ (2004) The nucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho. J Leukoc Biol 75:1173–1182

    Article  CAS  PubMed  Google Scholar 

  34. Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758

    Article  CAS  PubMed  Google Scholar 

  35. Sabirov RZ, Dutta AK, Okada Y (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J Gen Physiol 118:251–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hisadome K, Koyama T, Kimura C, Droogmans G, Ito Y, Oike M (2002) Volume regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J Gen Physiol 119:511–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Tsukimoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takai, E., Tsukimoto, M., Harada, H. et al. Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells. Purinergic Signalling 10, 487–497 (2014). https://doi.org/10.1007/s11302-014-9411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9411-x

Keywords

Navigation