Skip to main content
Log in

Diadenosine tetraphosphate (Ap4A) inhibits ATP-induced excitotoxicity: a neuroprotective strategy for traumatic spinal cord injury treatment

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Reducing cell death during the secondary injury is a major priority in the development of a cure for traumatic spinal cord injury (SCI). One of the earliest processes that follow SCI is the excitotoxicity resulting from the massive release of excitotoxicity mediators, including ATP, which induce an excessive and/or prolonged activation of their receptors and a deregulation of the calcium homeostasis. Diadenosine tetraphosphate (Ap4A) is an endogenous purinergic agonist, present in both extracellular and intracellular fluids, with promising cytoprotective effects in different diseases including neurodegenerative processes. In a search for efficient neuroprotective strategies for SCI, we have tested the capability of Ap4A to reduce the excitotoxic death mediated by the ATP-induced deregulation of calcium homeostasis and its consequences on tissue preservation and functional recovery in a mouse model of moderate contusive SCI. Our analyses with the murine neural cell line Neuro2a demonstrate that treatment with Ap4A reduces ATP-dependent excitotoxic death by both lowering the intracellular calcium response and decreasing the expression of specific purinergic receptors. Follow-up analyses in a mouse model of contusive SCI showed that acute administration of Ap4A following SCI reduces tissue damage and improves motor function recovery. These results suggest that Ap4A cytoprotection results from a decrease of the purinergic tone preventing the effects of a massive release of ATP after SCI, probably together with a direct induction of anti-apoptotic and pro-survival pathways via activation of P2Y2 proposed in previous studies. In conclusion, Ap4A may be a good candidate for an SCI therapy, particularly to reduce excitotoxicity in combination with other modulators and/or inhibitors of the excitotoxic process that are being tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu XZ, Xu XM, Hu R et al (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17:5395–5406

    CAS  PubMed  Google Scholar 

  2. Olney JW (1969) Glutaate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion J Neuropathol Exp Neurol 28:455–474

    Article  CAS  PubMed  Google Scholar 

  3. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622. doi:10.1056/NEJM199403033300907

    Article  CAS  PubMed  Google Scholar 

  4. Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Rev 42:169–185. doi:10.1016/S0165-0173(03)00152-8

    Article  CAS  PubMed  Google Scholar 

  5. Casha S, Yu WR, Fehlings MG (2001) Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 103:203–218. doi:10.1016/S0306-4522(00)00538-8

    Article  CAS  PubMed  Google Scholar 

  6. Lu J, Ashwell KW, Waite P (2000) Advances in secondary spinal cord injury: role of apoptosis. Spine (Phila Pa 1976) 25:1859–1866

    Article  CAS  Google Scholar 

  7. Demjen D, Klussmann S, Kleber S et al (2004) Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med 10:389–395. doi:10.1038/nm1007

    Article  CAS  PubMed  Google Scholar 

  8. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26. doi:10.3171/jns.1991.75.1.0015

    Article  CAS  PubMed  Google Scholar 

  9. Choi D (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634. doi:10.1016/0896-6273(88)90162-6

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Arcuino G, Takano T et al (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827. doi:10.1038/nm1082

    Article  CAS  PubMed  Google Scholar 

  11. Neary JT, Rathbone MP, Cattabeni F et al (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    Article  CAS  PubMed  Google Scholar 

  12. Abbracchio MP, Burnstock G (1998) Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–145

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Zhang M, Laties AM, Mitchell CH (2005) Stimulation of P2X7 receptors elevates Ca2+ and kills retinal ganglion cells. Invest Ophthalmol Vis Sci 46:2183–2191. doi:10.1167/iovs.05-0052

    Article  PubMed  Google Scholar 

  14. Hu H, Lu W, Zhang M et al (2010) Stimulation of the P2X7 receptor kills rat retinal ganglion cells in vivo. Exp Eye Res 91:425–432. doi:10.1016/j.exer.2010.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitchell CH, Lu W, Hu H et al (2009) The P2X7 receptor in retinal ganglion cells: a neuronal model of pressure-induced damage and protection by a shifting purinergic balance. Purinergic Signal 5:241–249. doi:10.1007/s11302-009-9142-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cisneros-Mejorado A, Pérez-Samartín A, Gottlieb M, Matute C (2015) ATP signaling in brain: release, excitotoxicity and potential therapeutic targets. Cell Mol Neurobiol 35:1–6. doi:10.1007/s10571-014-0092-3

    Article  CAS  PubMed  Google Scholar 

  17. Domercq M, Perez-Samartin A, Aparicio D et al (2010) P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58:730–740. doi:10.1002/glia.20958

    PubMed  Google Scholar 

  18. Cho J-H, Choi I-S, Jang I-S (2010) P2X7 receptors enhance glutamate release in hippocampal hilar neurons. Neuroreport 21:865–870. doi:10.1097/WNR.0b013e32833d9142

    Article  CAS  PubMed  Google Scholar 

  19. Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389:749–753. doi:10.1038/39639

    Article  CAS  PubMed  Google Scholar 

  20. Duan S, Anderson CM, Keung EC et al (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    CAS  PubMed  Google Scholar 

  21. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub R, Bolis L (eds) Cell Membr. Recept. Drugs Horm. A Multidiscip. Approach. Raven Press, New York, pp. 107–118

    Google Scholar 

  22. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    Article  CAS  PubMed  Google Scholar 

  23. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  24. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  25. Burnstock G (2004) Cotransmission. Curr Opin Pharmacol 4:47–52. doi:10.1016/j.coph.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  26. Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 542:529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99:16–34. doi:10.1113/expphysiol.2013.071951

    Article  CAS  PubMed  Google Scholar 

  28. Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl):S172–S181. doi:10.1038/sj.bjp.0706429

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Inoue K (2007) P2 receptors and chronic pain. Purinergic Signal 3:135–144. doi:10.1007/s11302-006-9045-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Inoue K (2006) ATP receptors of microglia involved in pain. Novartis Found Symp 276:263–272 discussion 273–81

    Article  CAS  PubMed  Google Scholar 

  31. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274. doi:10.1016/j.pneurobio.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  32. Rodríguez-Zayas AE, Torrado AI, Rosas OR et al (2011) Blockade of P2 nucleotide receptors after spinal cord injury reduced the gliotic response and spared tissue. J Mol Neurosci 46:167–176. doi:10.1007/s12031-011-9567-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Franke H, Krügel U, Illes P (2006) P2 receptors and neuronal injury. Pflugers Arch 452:622–644. doi:10.1007/s00424-006-0071-8

    Article  CAS  PubMed  Google Scholar 

  34. Majumder P, Trujillo CA, Lopes CG et al (2007) New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signal 3:317–331. doi:10.1007/s11302-007-9074-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagoshi N, Nakashima H, Fehlings MG (2015) Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules 20:7775–7789. doi:10.3390/molecules20057775

    Article  CAS  PubMed  Google Scholar 

  36. Fehlings MG, Wilson JR, Frankowski RF et al (2012) Riluzole for the treatment of acute traumatic spinal cord injury: rationale for and design of the NACTN phase I clinical trial. J Neurosurg Spine 17:151–156. doi:10.3171/2012.4.AOSPINE1259

    Article  PubMed  Google Scholar 

  37. Wilson JR, Fehlings MG (2014) Riluzole for acute traumatic spinal cord injury: a promising neuroprotective treatment strategy. World Neurosurg 81:825–829. doi:10.1016/j.wneu.2013.01.001

    Article  PubMed  Google Scholar 

  38. Chow DSL, Teng Y, Toups EG et al (2012) Pharmacology of riluzole in acute spinal cord injury. J Neurosurg Spine 17:129–140. doi:10.3171/2012.5.AOSPINE12112

    Article  PubMed  Google Scholar 

  39. Grossman RG, Fehlings MG, Frankowski RF et al (2014) A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma 31:239–255. doi:10.1089/neu.2013.2969

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wells JEA, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126:1628–1637. doi:10.1093/brain/awg178

    Article  PubMed  Google Scholar 

  41. Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169:337–352. doi:10.1111/bph.12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tikka TM, Koistinaho JE (2001) Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 166:7527–7533

    Article  CAS  PubMed  Google Scholar 

  43. Nagoshi N, Fehlings MG (2015) Investigational drugs for the treatment of spinal cord injury: review of preclinical studies and evaluation of clinical trials from phase I to II. Expert Opin Investig Drugs 24:645–658. doi:10.1517/13543784.2015.1009629

    Article  CAS  PubMed  Google Scholar 

  44. Peng W, Cotrina ML, Han X et al (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106:12489–12493. doi:10.1073/pnas.0902531106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marcillo A, Frydel B, Bramlett HM, Dietrich WD (2012) A reassessment of P2X7 receptor inhibition as a neuroprotective strategy in rat models of contusion injury. Exp Neurol 233:687–692. doi:10.1016/j.expneurol.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  46. Pojoga LH, Haghiac ML, Moose JE, Hilderman RH (2004) Determination of ATP impurity in adenine dinucleotides. Nucleosides Nucleotides Nucleic Acids 23:581–598. doi:10.1081/NCN-120030716

    Article  CAS  PubMed  Google Scholar 

  47. Pojoga LH, Haghiac M, Hilderman RH (2002) Inhibition by adenine dinucleotides of ATP-induced prostacyclin release by bovine aortic endothelial cells. Biochem Pharmacol 64:405–412

    Article  CAS  PubMed  Google Scholar 

  48. Wildman SS, Brown SG, King BF, Burnstock G (1999) Selectivity of diadenosine polyphosphates for rat P2X receptor subunits. Eur J Pharmacol 367:119–123

    Article  CAS  PubMed  Google Scholar 

  49. Chang H, Yanachkov IB, Michelson AD et al (2010) Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors. Thromb Res 125:159–165. doi:10.1016/j.thromres.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  50. Conant AR, Fisher MJ, McLennan AG, Simpson AW (2000) Diadenosine polyphosphates are largely ineffective as agonists at natively expressed P2Y(1) and P2Y(2) receptors on cultured human saphenous vein endothelial cells. J Vasc Res 37:548–555

    Article  CAS  PubMed  Google Scholar 

  51. Crooke A, Mediero A, Guzmán-Aránguez A, Pintor J (2009) Silencing of P2Y2 receptor delays Ap4A-corneal re-epithelialization process. Mol Vis 15:1169–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pintor J, King BF, Miras-Portugal MT, Burnstock G (1996) Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors. Br J Pharmacol 119:1006–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lazarowski ER, Watt WC, Stutts MJ et al (1995) Pharmacological selectivity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate. Br J Pharmacol 116:1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schachter JB, Li Q, Boyer JL et al (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br J Pharmacol 118:167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Communi D, Motte S, Boeynaems JM, Pirotton S (1996) Pharmacological characterization of the human P2Y4 receptor. Eur J Pharmacol 317:383–389

    Article  CAS  PubMed  Google Scholar 

  56. Marteau F, Le Poul E, Communi D et al (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64:104–112. doi:10.1124/mol.64.1.104

    Article  CAS  PubMed  Google Scholar 

  57. Zhang H (2008) P2,P3-[18F] Monofluoromethylene diadenosine-5′,5″’-P1,P4-tetraphosphate. In: Mol. Imaging Contrast Agent Database (MICAD). Natl. Cent. Biotechnol. Information, NLM, NIH, Bethesda, MD. http://www.ncbi.nlm.nih.gov/books/NBK22992/pdf/Bookshelf_NBK22992.pdf.

  58. Pintor J, Miras-Portugal MT (1995) A novel receptor for diadenosine polyphosphates coupled to calcium increase in rat midbrain synaptosomes. Br J Pharmacol 115:895–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zamecnik PC, Stephenson ML, Janeway CM, Randerath K (1966) Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. Biochem Biophys Res Commun 24:91–97

    Article  CAS  PubMed  Google Scholar 

  60. Miras-Portugal MT, Gualix J, Pintor J (1998) The neurotransmitter role of diadenosine polyphosphates. FEBS Lett 430:78–82

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez del Castillo A, Torres M, Delicado EG, Miras-Portugal MT (1988) Subcellular distribution studies of diadenosine polyphosphates—Ap4A and Ap5A—in bovine adrenal medulla: presence in chromaffin granules. J Neurochem 51:1696–1703

    Article  CAS  PubMed  Google Scholar 

  62. Pintor J, Díaz-Rey MA, Torres M, Miras-Portugal MT (1992) Presence of diadenosine polyphosphates—Ap4A and Ap5A—in rat brain synaptic terminals. Ca2+ dependent release evoked by 4-aminopyridine and veratridine. Neurosci Lett 136:141–144

    Article  CAS  PubMed  Google Scholar 

  63. Pintor J, Rotllán P, Torres M, Miras-Portugal MT (1992) Characterization and quantification of diadenosine hexaphosphate in chromaffin cells: granular storage and secretagogue-induced release. Anal Biochem 200:296–300

    Article  CAS  PubMed  Google Scholar 

  64. Carracedo G, Peral A, Pintor J (2010) Diadenosine polyphosphates in tears of Sjogren syndrome patients. Invest Ophthalmol Vis Sci 51:5452–5459. doi:10.1167/iovs.09-5088

    Article  PubMed  Google Scholar 

  65. Pintor J (2003) Presence of diadenosine polyphosphates in the aqueous humor: their effect on intraocular pressure. J Pharmacol Exp Ther 304:342–348. doi:10.1124/jpet.102.041368

    Article  CAS  PubMed  Google Scholar 

  66. Pintor J, Bautista A, Carracedo G, Peral A (2004) UTP and diadenosine tetraphosphate accelerate wound healing in the rabbit cornea. Ophthalmic Physiol Opt 24:186–193. doi:10.1111/j.1475-1313.2004.00182.x

    Article  PubMed  Google Scholar 

  67. Hoyle CHV, Pintor JJ (2010) Diadenosine tetraphosphate protects sympathetic terminals from 6-hydroxydopamine-induced degeneration in the eye. Acta Physiol 199:205–210. doi:10.1111/j.1748-1716.2010.02089.x

    Article  CAS  Google Scholar 

  68. Wang Y, Chang C-F, Morales M et al (2003) Diadenosine tetraphosphate protects against injuries induced by ischemia and 6-hydroxydopamine in rat brain. J Neurosci 23:7958–7965

    CAS  PubMed  Google Scholar 

  69. Harvey BK, Chou J, Shen H et al (2009) Diadenosine tetraphosphate reduces toxicity caused by high-dose methamphetamine administration. Neurotoxicology 30:436–444. doi:10.1016/j.neuro.2009.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  71. Negulescu PA, Machen TE (1990) Intracellular ion activities and membrane transport in parietal cells measured with fluorescent dyes. Methods Enzymol 192:38–81

    Article  CAS  PubMed  Google Scholar 

  72. Gürer B, Kahveci R, Gökçe EC et al (2015) Evaluation of topical application and systemic administration of rosuvastatin in preventing epidural fibrosis in rats. Spine J 15:522–529. doi:10.1016/j.spinee.2014.10.018

    Article  PubMed  Google Scholar 

  73. Louw AM, Kolar MK, Novikova LN et al (2016) Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine 12:643–653. doi:10.1016/j.nano.2015.10.011

    CAS  PubMed  Google Scholar 

  74. Basso DM, Fisher LC, Anderson AJ et al (2006) Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23:635–659. doi:10.1089/neu.2006.23.635

    Article  PubMed  Google Scholar 

  75. Hamm RJ, Pike BR, O’Dell DM et al (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11:187–196

    Article  CAS  PubMed  Google Scholar 

  76. Rabchevsky AG, Fugaccia I, Sullivan PG, Scheff SW (2001) Cyclosporin a treatment following spinal cord injury to the rat: behavioral effects and stereological assessment of tissue sparing. J Neurotrauma 18:513–522. doi:10.1089/089771501300227314

    Article  CAS  PubMed  Google Scholar 

  77. Liverman BM, Altevogt CT, Joy JE, Johnson RT (2005) Spinal cord injury: progress, promise, and priorities. The National Academies Press, Washington D.C

    Google Scholar 

  78. Onose G, Anghelescu A, Muresanu DF et al (2009) A review of published reports on neuroprotection in spinal cord injury. Spinal cord Off J Int Med Soc Paraplegia 47:716–726. doi:10.1038/sc.2009.52

    Article  CAS  Google Scholar 

  79. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57. doi:10.1016/j.pneurobio.2013.11.002

    Article  PubMed  Google Scholar 

  80. Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1:80–100. doi:10.1602/neurorx.1.1.80

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gómez-Villafuertes R, del Puerto A, Díaz-Hernández M et al (2009) Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells. FEBS J 276:5307–5325. doi:10.1111/j.1742-4658.2009.07228.x

    Article  PubMed  CAS  Google Scholar 

  82. León-Otegui M, Gómez-Villafuertes R, Díaz-Hernández JI et al (2011) Opposite effects of P2X7 and P2Y2 nucleotide receptors on α-secretase-dependent APP processing in neuro-2a cells. FEBS Lett 585:2255–2262. doi:10.1016/j.febslet.2011.05.048

    Article  PubMed  CAS  Google Scholar 

  83. Ennion SJ, Evans RJ (2001) Agonist-stimulated internalisation of the ligand-gated ion channel P2X(1) in rat vas deferens. FEBS Lett 489:154–158

    Article  CAS  PubMed  Google Scholar 

  84. Lalo U, Allsopp RC, Mahaut-Smith MP, Evans RJ (2010) P2X1 receptor mobility and trafficking; regulation by receptor insertion and activation. J Neurochem 113:1177–1187. doi:10.1111/j.1471-4159.2010.06730.x

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dutton JL, Poronnik P, Li GH et al (2000) P2X(1) receptor membrane redistribution and down-regulation visualized by using receptor-coupled green fluorescent protein chimeras. Neuropharmacology 39:2054–2066

    Article  CAS  PubMed  Google Scholar 

  86. Li GH, Lee EM, Blair D et al (2000) The distribution of P2X receptor clusters on individual neurons in sympathetic ganglia and their redistribution on agonist activation. J Biol Chem 275:29107–29112. doi:10.1074/jbc.M910277199

    Article  CAS  PubMed  Google Scholar 

  87. Bobanovic LK, Royle SJ, Murrell-Lagnado RD (2002) P2X receptor trafficking in neurons is subunit specific. J Neurosci 22:4814–4824

    CAS  PubMed  Google Scholar 

  88. Royle SJ, Bobanović LK, Murrell-Lagnado RD (2002) Identification of a non-canonical tyrosine-based endocytic motif in an ionotropic receptor. J Biol Chem 277:35378–35385. doi:10.1074/jbc.M204844200

    Article  CAS  PubMed  Google Scholar 

  89. Koenig JA, Edwardson JM (1997) Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol Sci 18:276–287

    Article  CAS  PubMed  Google Scholar 

  90. Koenig JA (2004) Assessment of receptor internalization and recycling. Methods Mol Biol 259:249–273. doi:10.1385/1-59259-754-8:249

    CAS  PubMed  Google Scholar 

  91. Donnelly-Roberts DL, Namovic MT, Han P, Jarvis MF (2009) Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol 157:1203–1214. doi:10.1111/j.1476-5381.2009.00233.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haghiac M, Pojoga LH, Hilderman RH (2001) Studies on the effect of diadenlyated nucleotides on calcium mobilization and prostacyclin synthesis in bovine aortic endothelial cells. Cell Signal 13:145–150

    Article  CAS  PubMed  Google Scholar 

  93. Gómez-Villafuertes R, Gualix J, Miras-Portugal MT, Pintor J (2000) Adenosine 5′-tetraphosphate (Ap(4)), a new agonist on rat midbrain synaptic terminal P2 receptors. Neuropharmacology 39:2381–2390

    Article  PubMed  Google Scholar 

  94. Miras-Portugal MT, Gualix J, Mateo J et al (1999) Diadenosine polyphosphates, extracellular function and catabolism. Prog Brain Res 120:397–409

    Article  CAS  PubMed  Google Scholar 

  95. Miras-Portugal MT, Pintor J, Gualix J (2003) Ca2+ signalling in brain synaptosomes activated by dinucleotides. J Membr Biol 194:1–10. doi:10.1007/s00232-003-2024-x

    Article  CAS  PubMed  Google Scholar 

  96. Varshavsky A (1983) Diadenosine 5′, 5′′′-P1, P4-tetraphosphate: a pleiotropically acting alarmone? Cell 34:711–712. doi:10.1016/0092-8674(83)90526-3

    Article  CAS  PubMed  Google Scholar 

  97. Ribeiro FF, Xapelli S, Miranda-Lourenço C et al (2015) Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology. doi:10.1016/j.neuropharm.2015.11.006

    Google Scholar 

  98. Reigada D, Nieto-Díaz M, Navarro-Ruiz R et al (2015) Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience 300:404–417. doi:10.1016/j.neuroscience.2015.05.036

    Article  CAS  PubMed  Google Scholar 

  99. Basso DM (2004) Behavioral testing after spinal cord injury: congruities, complexities, and controversies. J Neurotrauma 21:395–404. doi:10.1089/089771504323004548

    Article  PubMed  Google Scholar 

  100. Flynn JR, Graham BA, Galea MP, Callister RJ (2011) The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 60:809–822. doi:10.1016/j.neuropharm.2011.01.016

    Article  CAS  PubMed  Google Scholar 

  101. Bareyre FM, Kerschensteiner M, Raineteau O et al (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7:269–277. doi:10.1038/nn1195

    Article  CAS  PubMed  Google Scholar 

  102. Miras-Portugal MT, Gomez-Villafuertes R, Gualix J et al (2015) Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology. doi:10.1016/j.neuropharm.2015.09.002

    PubMed  Google Scholar 

  103. Gómez-Villafuertes R, Rodríguez-Jiménez FJ, Alastrue-Agudo A et al (2015) Purinergic receptors in spinal cord-derived ependymal stem/progenitor cells and their potential role in cell-based therapy for spinal cord injury. Cell Transplant 24:1493–1509. doi:10.3727/096368914X682828

    Article  PubMed  Google Scholar 

  104. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532. doi:10.1038/nature04886

    Article  CAS  PubMed  Google Scholar 

  105. Gourine AV, Dale N, Llaudet E et al (2007) Release of ATP in the central nervous system during systemic inflammation: real-time measurement in the hypothalamus of conscious rabbits. J Physiol 585:305–316. doi:10.1113/jphysiol.2007.143933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Khakh BS, Henderson G (1998) ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol Pharmacol 54:372–378

    CAS  PubMed  Google Scholar 

  107. Jeremic A, Jeftinija K, Stevanovic J et al (2001) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 77:664–675

    Article  CAS  PubMed  Google Scholar 

  108. Arthur DB, Georgi S, Akassoglou K, Insel PA (2006) Inhibition of apoptosis by P2Y2 receptor activation: novel pathways for neuronal survival. J Neurosci 26:3798–3804. doi:10.1523/JNEUROSCI.5338-05.2006

    Article  CAS  PubMed  Google Scholar 

  109. Wildman SS, Unwin RJ, King BF (2003) Extended pharmacological profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular H+ and Zn2+ ions. Br J Pharmacol 140:1177–1186. doi:10.1038/sj.bjp.0705544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Loma P, Guzman-Aranguez A, Pérez de Lara MJ, Pintor J (2015) Diadenosine tetraphosphate induces tight junction disassembly thus increasing corneal epithelial permeability. Br J Pharmacol 172:1045–1058. doi:10.1111/bph.12972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Claire H. Mitchell and Dr. Jesús Pintor for their helpful comments and their kind criticism in the preparation of this manuscript. This work was supported by Fundación para la Investigación Sanitaria de Castilla la Mancha (FISCAM). PI-2010/19. We thank the technical and logistic support to the Fundación del Hospital Nacional de Parapléjicos para la Investigación y la Integración (FUHNPAIIN) and the microscopy and cytometry facilities of the Experimental Neurology Unit, Hospital Nacional de Parapléjicos, Toledo, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Reigada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reigada, D., Navarro-Ruiz, R.M., Caballero-López, M.J. et al. Diadenosine tetraphosphate (Ap4A) inhibits ATP-induced excitotoxicity: a neuroprotective strategy for traumatic spinal cord injury treatment. Purinergic Signalling 13, 75–87 (2017). https://doi.org/10.1007/s11302-016-9541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9541-4

Keywords

Navigation