Skip to main content
Log in

ATP Signaling in Brain: Release, Excitotoxicity and Potential Therapeutic Targets

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adenosine 5′-triphosphate (ATP) is released as a genuine co-transmitter, or as a principal purinergic neurotransmitter, in an exocytotic and non-exocytotic manner. It activates ionotropic (P2X) and metabotropic (P2Y) receptors which mediate a plethora of functions in the brain. In particular, P2X7 receptor (P2X7R) are expressed in all brain cells and its activation can form a large pore allowing the passage of organic cations, the leakage of metabolites of up to 900 Da and the release of ATP itself. In turn, pannexins (Panx) are a family of proteins forming hemichannels that can release ATP. In this review, we summarize the progress in the understanding of the mechanisms of ATP release both in physiological and pathophysiological stages. We also provide data suggesting that P2X7R and pannexin 1 (Panx1) may form a large pore in cortical neurons as assessed by electrophysiology. Finally, the participation of calcium homeostasis modulator 1 is also suggested, another non-selective ion channel that can release ATP, and that could play a role in ischemic events, together with P2X7 and Panx1 during excitotoxicity by ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Aqwati Q (1995) Regulation of ion channels by ABC transporters that secrete ATP. Science 269:805–806

    Article  Google Scholar 

  • Alberto AVP, Faria RX, Couto CGC, Ferreira LGB et al (2013) Is pannexin the pore associated with the P2X7 receptor? Naunyn Schmiedebergs Arch Pharmacol 386(9):775–787

    Article  CAS  PubMed  Google Scholar 

  • Arbeloa J, Pérez-Samartín A, Gottlieb M, Matute C (2012) P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 45(3):954–961

    Article  CAS  PubMed  Google Scholar 

  • Braun N, Zhu Y, Krieglstein J, Culmsee C, Zimmermann H (1998) Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 18:4891–4900

    CAS  PubMed  Google Scholar 

  • Burnstock G (1999) Current status of purinergic signalling in the nervous system. Prog Brain Res 120:3–10

    Article  CAS  PubMed  Google Scholar 

  • Cavaliere F, Amadio S, Sancesario G, Bernardi G, Volonté C (2004) Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampal cultures. J Cereb Blood Flow Metab 24:392–398

    Article  CAS  PubMed  Google Scholar 

  • Cotrina ML, Lin JH, López-García JC, Naus CC, Nedergaard M (2000) ATP mediated glia signaling. J Neurosci 20:2835–2844

    CAS  PubMed  Google Scholar 

  • Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32(2):79–87

    Article  PubMed  Google Scholar 

  • Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H et al (2008) A polymorphism in CALHM1 influences Ca2+ homeostasis, Aβ levels, and Alzheimer’s disease risk. Cell 133(7):1149–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    Article  CAS  PubMed  Google Scholar 

  • Evans RJ, Lewis C, Virginio C, Lundstrom K et al (1996) Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol (Lond) 497(Pt 2):413–422

    Article  CAS  Google Scholar 

  • Ferrari D, Villalba M, Chiozzi P, Falzoni S et al (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539

    CAS  PubMed  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S, Dal Susino M et al (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36(9):1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1929) Phosphorus compounds of muscle and liver. Science 70:381–382

    Article  CAS  PubMed  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    CAS  PubMed  Google Scholar 

  • Iglesias R, Locovei S, Roque A, Alberto AP et al (2008) P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol 295(3):C752–C760

    Article  CAS  Google Scholar 

  • Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J Neurosci 29(21):7092–7097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiménez AI, Castro E, Communi D, Boeynaems JM et al (2000) Coexpression of several types of metabotropic nucleotide receptors in single cerebellar astrocytes. J Neurochem 75:2071–2079

    Article  PubMed  Google Scholar 

  • Juranyi Z, Sperlágh B, Vizi ES (1999) Involvement of P2 purinoceptors and the nitric oxide pathway in [3H] purine outflow evoked by short-term hypoxia and hypoglycemia in rat hippocampal slices. Brain Res 823:183–190

    Article  CAS  PubMed  Google Scholar 

  • Lambert JC, Sleegers K, Gonzalez-Perez A, Ingelsson M et al (2010) The CALHM1 P86L polymorphism is a genetic modifier of age at onset in Alzheimer’s disease: a meta-analysis study. J Alzheimers Dis 22(1):247–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Feuvre RA, Brough D, Touzani O, Rothwell NJ (2003) Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J Cereb Blood Flow Metab 23(3):381–384

    Article  PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  PubMed  Google Scholar 

  • Liu HT, Sabirov RZ, Okada Y (2008) Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes. Purinergic Signal 4(2):147–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. PNAS 103(20):7655–7659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett 581(3):483–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Z, Siebert AP, Cheung KH, Lee RJ et al (2012) Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. PNAS 109(28):E1963–E1971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A et al (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27(35):9525–9533

    Article  CAS  PubMed  Google Scholar 

  • Melani A, Turchi D, Vannucchi MG, Cipriani S et al (2005) ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 47:442–448

    Article  CAS  PubMed  Google Scholar 

  • North RA (2002) The molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  • Orellana JA, Sáez PJ, Cortés-Campos C, Elizondo RJ et al (2012) Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia 60(1):53–68

    Article  PubMed Central  PubMed  Google Scholar 

  • Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1B release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pelegrin P, Surprenant A (2009) The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release. Purinergic Signal 5:129–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Queiroz G, Meyer DK, Meyer A, Starke K, von Kügelgen I (1999) A study of the mechanism of the release of ATP from rat cortical astroglial cells evoked by activation of glutamate receptors. Neuroscience 91:1171–1181

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Zoidl D, Wahle P, Dermietzel R (2006) Pannexin expression in the cerebellum. Cerebellum 5(3):189–192

    Article  CAS  PubMed  Google Scholar 

  • Rigato C, Swinnen N, Buckinx R et al (2012) Microglia proliferation is controlled by P2X7 receptors in a Pannexin-1-independent manner during early embryonic spinal cord invasion. J Neurosci 32(34):11559–11573

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Sáez JC, Leybaert L (2014) Hunting for connexin hemichannels. FEBS Lett 588(8):1205–1211

    Article  PubMed  Google Scholar 

  • Siebert AP, Ma Z, Grevet JD, Demuro A et al (2013) Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem 288(9):6140–6153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silinsky EM, Gerzanich V, Vanner SM (1992) ATP mediates excitatory synaptic transmission in mammalian neurones. Br J Pharmacol 106:762–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silverman WR, de Rivero-Vaccari JP, Locovei S, Qiu F et al (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24(2):337–345

    Article  CAS  PubMed  Google Scholar 

  • Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096

    CAS  PubMed  Google Scholar 

  • Sperlágh B, Kittel A, Lajtha A, Vizi ES (1995) ATP acts as fast neurotransmitter in rat habenula: neurochemical and enzymecytochemical evidence. Neuroscience 66:915–920

    Article  PubMed  Google Scholar 

  • Sperlágh B, Vizi S, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    Article  PubMed  Google Scholar 

  • Taruno A, Vingtdeux V, Ohmoto M, Ma Z et al (2013) CALHM1 ion channel mediates purinérgico neurotransmission of sweet, bitter and umami tastes. Nature 495(7440):223–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    Article  CAS  PubMed  Google Scholar 

  • Thompson RJ, Jackson MF, Olah ME, Rungta RL et al (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–1559

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    Article  CAS  PubMed  Google Scholar 

  • Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36(9):1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A (1999) Pore dilation of neuronal P2X receptor channels. Nat Neurosci 2:315–321

    Article  CAS  PubMed  Google Scholar 

  • Vogt A, Hormuzdi SG, Monyer H (2005) Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Mol Brain Res 141(1):113–120

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Arcuino G, Takano T, Lin J et al (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Khadra A, Li S, Tomić M et al (2010) Experimental characterization and mathematical modeling of P2X7 receptor channel gating. J Neurosci 30(42):14213–14224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yenari MA, Kauppinen TM, Swanson RA (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7:378–391

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL et al (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301

    Article  CAS  PubMed  Google Scholar 

  • Zoidl G, Petrasch-Parwez E, Ray A, Meier C et al (2007) Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience 146:9–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by CIBERNED, Gobierno Vasco, MINECO, Eranet-Neuron and Universidad del País Vasco. A. C-M is a recipient of a postdoctoral position from CONACYT (México).

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Standards

The experiments of this work were conducted under the approval of our internal animal ethics committee (University of the Basque Country, UPV/EHU). Animals were handled in accordance with the European Communities Council Directive. All possible efforts were made to minimize animal suffering and the number of animals used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Matute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cisneros-Mejorado, A., Pérez-Samartín, A., Gottlieb, M. et al. ATP Signaling in Brain: Release, Excitotoxicity and Potential Therapeutic Targets. Cell Mol Neurobiol 35, 1–6 (2015). https://doi.org/10.1007/s10571-014-0092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0092-3

Keywords

Navigation