Skip to main content
Log in

Mertk Reduces Blood-Spinal Cord Barrier Permeability Through the Rhoa/Rock1/P-MLC Pathway After Spinal Cord Injury

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Disruption of the blood-spinal cord barrier (BSCB) is a critical event in the secondary injury following spinal cord injury (SCI). Mertk has been reported to play an important role in regulating inflammation and cytoskeletal dynamics. However, the specific involvement of Mertk in BSCB remains elusive. Here, we demonstrated a distinct role of Mertk in the repair of BSCB. Mertk expression is decreased in endothelial cells following SCI. Overexpression of Mertk upregulated tight junction proteins (TJs), reducing BSCB permeability and subsequently inhibiting inflammation and apoptosis. Ultimately, this led to enhanced neural regeneration and functional recovery. Further experiments revealed that the RhoA/Rock1/P-MLC pathway plays a key role in the effects of Mertk. These findings highlight the role of Mertk in promoting SCI recovery through its ability to mitigate BSCB permeability and may provide potential targets for SCI repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data and Code Availability

The datasets used in this study are available upon reasonable request from the corresponding author.

References

  1. Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020, 21: 366–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lin J, Xiong Z, Gu J, Sun Z, Jiang S, Fan D. Sirtuins: Potential therapeutic targets for defense against oxidative stress in spinal cord injury. Oxid Med Cell Longev 2021, 2021: 7207692.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hu Y, Li L, Hong B, Xie Y, Li T, Feng C, et al. Epidemiological features of traumatic spinal cord injury in China: A systematic review and meta-analysis. Front Neurol 2023, 14: 1131791.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li G, Fan ZK, Gu GF, Jia ZQ, Zhang QQ, Dai JY, et al. Epidural spinal cord stimulation promotes motor functional recovery by enhancing oligodendrocyte survival and differentiation and by protecting myelin after spinal cord injury in rats. Neurosci Bull 2020, 36: 372–384.

    Article  PubMed  Google Scholar 

  5. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 2001, 26: S2–S12.

    Article  CAS  PubMed  Google Scholar 

  6. Park CS, Lee JY, Choi HY, Yune TY. Suppression of transient receptor potential melastatin 7 by carvacrol protects against injured spinal cord by inhibiting blood-spinal cord barrier disruption. J Neurotrauma 2022, 39: 735–749.

    Article  PubMed  Google Scholar 

  7. Chio JCT, Wang J, Surendran V, Li L, Zavvarian MM, Pieczonka K, et al. Delayed administration of high dose human immunoglobulin G enhances recovery after traumatic cervical spinal cord injury by modulation of neuroinflammation and protection of the blood spinal cord barrier. Neurobiol Dis 2021, 148: 105187.

    Article  CAS  PubMed  Google Scholar 

  8. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008, 57: 178–201.

    Article  CAS  PubMed  Google Scholar 

  9. Figley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma 2014, 31: 541–552.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhao R, Wu X, Bi XY, Yang H, Zhang Q. Baicalin attenuates blood-spinal cord barrier disruption and apoptosis through PI3K/Akt signaling pathway after spinal cord injury. Neural Regen Res 2022, 17: 1080–1087.

    Article  CAS  PubMed  Google Scholar 

  11. Lemke G. Biology of the TAM receptors. Cold Spring Harb Perspect Biol 2013, 5: a009076.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rothlin CV, Carrera-Silva EA, Bosurgi L, Ghosh S. TAM receptor signaling in immune homeostasis. Annu Rev Immunol 2015, 33: 355–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Du Y, Lu Z, Yang D, Wang D, Jiang L, Shen Y, et al. MerTK inhibits the activation of the NLRP3 inflammasome after subarachnoid hemorrhage by inducing autophagy. Brain Res 2021, 1766: 147525.

    Article  CAS  PubMed  Google Scholar 

  14. Shen K, Reichelt M, Kyauk RV, Ngu H, Shen YAA, Foreman O, et al. Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Rep 2021, 34: 108835.

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Zheng J, Xu S, Fang Y, Wu Y, Zeng J, et al. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation 2021, 18: 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao B, Yin Q, Fei Y, Zhu J, Qiu Y, Fang W, et al. Research progress of mechanisms for tight junction damage on blood-brain barrier inflammation. Arch Physiol Biochem 2022, 128: 1579–1590.

    Article  CAS  PubMed  Google Scholar 

  17. Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol Cancer 2019, 18: 94.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Knox EG, Aburto MR, Tessier C, Nagpal J, Clarke G, O’Driscoll CM, et al. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function. iScience 2022, 25: 105648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salvador E, Burek M, Förster CY. Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade. Front Cell Neurosci 2015, 9: 323.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Liu B, Zhao T, Quan X, Han Y, Cheng Y, et al. Comparative study of extracellular vesicles derived from mesenchymal stem cells and brain endothelial cells attenuating blood-brain barrier permeability via regulating Caveolin-1-dependent ZO-1 and Claudin-5 endocytosis in acute ischemic stroke. J Nanobiotechnology 2023, 21: 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie C, Wang Y, Wang J, Xu Y, Liu H, Guo J, et al. Perlecan improves blood spinal cord barrier repair through the integrin β1/ROCK/MLC pathway after spinal cord injury. Mol Neurobiol 2023, 60: 51–67.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Liu XT, Zhang PL, Li YC, Sun MR, Wang YT, et al. Hydroxysafflor yellow A blocks HIF-1 α induction of NOX2 and protects ZO-1 protein in cerebral microvascular endothelium. Antioxidants 2022, 11: 728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian ZY, Kong RY, Zhang S, Wang BY, Chang J, Cao J, et al. Ruxolitinib attenuates secondary injury after traumatic spinal cord injury. Neural Regen Res 2022, 17: 2029–2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye LB, Yu XC, Xia QH, Yang Y, Chen DQ, Wu F, et al. Regulation of caveolin-1 and junction proteins by bFGF contributes to the integrity of blood-spinal cord barrier and functional recovery. Neurotherapeutics 2016, 13: 844–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goldim MPS, Della Giustina A, Petronilho F. Using Evans blue dye to determine blood-brain barrier integrity in rodents. Curr Protoc Immunol 2019, 126: e83.

    Article  PubMed  Google Scholar 

  26. Winkler L, Blasig R, Breitkreuz-Korff O, Berndt P, Dithmer S, Helms HC, et al. Tight junctions in the blood-brain barrier promote edema formation and infarct size in stroke—Ambivalent effects of sealing proteins. J Cereb Blood Flow Metab 2021, 41: 132–145.

    Article  CAS  PubMed  Google Scholar 

  27. Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, Shibata S, et al. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 2006, 12: 1380–1389.

    Article  CAS  PubMed  Google Scholar 

  28. Ren ZW, Zhou JG, Xiong ZK, Zhu FZ, Guo XD. Effect of exosomes derived from miR-133b-modified ADSCs on the recovery of neurological function after SCI. Eur Rev Med Pharmacol Sci 2019, 23: 52–60.

    PubMed  Google Scholar 

  29. Martín-Cámara O, Cores Á, López-Alvarado P, Menéndez JC. Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 2021, 225: 113742.

    Article  PubMed  Google Scholar 

  30. Lew ED, Oh J, Burrola PG, Lax I, Zagórska A, Través PG, et al. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife 2014, 3: e03385.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cosemans JMEM, Van Kruchten R, Olieslagers S, Schurgers LJ, Verheyen FK, Munnix ICA, et al. Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. J Thromb Haemost 2010, 8: 1797–1808.

    Article  CAS  PubMed  Google Scholar 

  32. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013, 504: 394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, et al. Blood-spinal cord barrier in spinal cord injury: A review. J Neurotrauma 2021, 38: 1203–1224.

    Article  PubMed  Google Scholar 

  34. Miner JJ, Daniels BP, Shrestha B, Proenca-Modena JL, Lew ED, Lazear HM, et al. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nat Med 2015, 21: 1464–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rothlin CV, Leighton JA, Ghosh S. Tyro3, Axl, and Mertk receptor signaling in inflammatory bowel disease and colitis-associated cancer. Inflamm Bowel Dis 2014, 20: 1472–1480.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province (2017A030313111) and the National Natural Science Foundation of China (81974329).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhu.

Ethics declarations

Conflict of interest

No competing interests have been disclosed by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Sun, Y., Xia, B. et al. Mertk Reduces Blood-Spinal Cord Barrier Permeability Through the Rhoa/Rock1/P-MLC Pathway After Spinal Cord Injury. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-024-01199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-024-01199-x

Keywords

Navigation