Skip to main content

Advertisement

Log in

Blockade of P2 Nucleotide Receptors After Spinal Cord Injury Reduced the Gliotic Response and Spared Tissue

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) triggers a sequel of events commonly associated with cell death and dysfunction of glias and neurons surrounding the lesion. Although astrogliosis and glial scar formation have been involved in both damage and repair processes after SCI, their role remains controversial. Our goal was to investigate the effects of the P2 receptors antagonists, PPADS and suramin, in the establishment of the reactive gliosis and the formation of the glial scar. Molecular biology, immunohistochemistry, spared tissue, and locomotor behavioral studies were used to evaluate astrogliosis, in adult female Sprague–Dawley rats treated with P2 antagonists after moderate injury with the NYU impactor device. Semi-quantitative RT-PCR confirmed the presence of P2Y1, P2Y2, P2Y4, P2Y6, P2Y12, and P2X2 receptors in the adult spinal cord. Immunohistochemistry studies confirmed a significant decrease in GFAP-labeled cells at the injury epicenter as well as a decrease in spared tissue after treatment with the antagonists. Functional open field testing revealed no significant locomotor score differences between treated and control animals. Our work is consistent with studies suggesting that astrogliosis is an important event after SCI that limits tissue damage and lesion spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbracchio MP, Saffrey MJ, Hopker V, Burnstock G (1994) Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience 59:67–76

    Article  PubMed  CAS  Google Scholar 

  • Abbracchio MP, Burnstock G, Boeynaems JM et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed  CAS  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Anliker B, Becker CG et al (2000) Tenascin-R inhibits regrowth of optic fibers in vitro and persists in the optic nerve of mice after injury. Glia 29:330–346

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127–1139

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2000) P2X receptors in sensory neurones. Br J Anaesth 84:476–488

    PubMed  CAS  Google Scholar 

  • Bush TG, Puvanachandra N, Horner CH et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308

    Article  PubMed  CAS  Google Scholar 

  • Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM (2007) Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 27:2176–2185

    Article  PubMed  CAS  Google Scholar 

  • Cavaliere F, Florenzano F, Amadio S et al (2003) Up-regulation of P2X2, P2X4 receptor and ischemic cell death: prevention by P2 antagonists. Neuroscience 120:85–98

    Article  PubMed  CAS  Google Scholar 

  • Charlton SJ, Brown CA, Weisman GA, Turner JT, Erb L, Boarder MR (1996) PPADS and suramin as antagonists at cloned P2Y- and P2U-purinoceptors. Br J Pharmacol 118:704–710

    PubMed  CAS  Google Scholar 

  • Chiu FC, Goldman JE (1985) Regulation of glial fibrillary acidic protein (GFAP) expression in CNS development and in pathological states. J Neuroimmunol 8:283–292

    Article  PubMed  CAS  Google Scholar 

  • Collo G, North RA, Kawashima E et al (1996) Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    PubMed  CAS  Google Scholar 

  • Cruz-Orengo L, Figueroa JD, Velazquez I et al (2006) Blocking EphA4 upregulation after spinal cord injury results in enhanced chronic pain. Exp Neurol 202:421–433

    Article  PubMed  CAS  Google Scholar 

  • Di Prospero NA, Zhou XR, Meiners S, McAuliffe WG, Ho SY, Geller HM (1998) Suramin disrupts the gliotic response following a stab wound injury to the adult rat brain. J Neurocytol 27:491–506

    Article  PubMed  Google Scholar 

  • Dijkstra S, Geisert EE Jr, Dijkstra CD, Bar PR, Joosten EA (2001) CD81 and microglial activation in vitro: proliferation, phagocytosis and nitric oxide production. J Neuroimmunol 114:151–159

    Article  PubMed  CAS  Google Scholar 

  • Ducker TB, Kindt GW, Kempf LG (1971) Pathological findings in acute experimental spinal cord trauma. J Neurosurg 35:700–708

    Article  PubMed  CAS  Google Scholar 

  • Erb L, Liao Z, Seye CI, Weisman GA (2006) P2 receptors: intracellular signaling. Pflugers Arch 452:552–562

    Article  PubMed  CAS  Google Scholar 

  • Fam SR, Gallagher CJ, Salter MW (2000) P2Y(1) purinoceptor-mediated Ca(2+) signaling and Ca(2+) wave propagation in dorsal spinal cord astrocytes. J Neurosci 20:2800–2808

    PubMed  CAS  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  PubMed  CAS  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S et al (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295–1301

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Stevens-Graham B (2002) New insights into neuron–glia communication. Science 298:556–562

    Article  PubMed  CAS  Google Scholar 

  • Figueroa JD, Benton RL, Velazquez I et al (2006) Inhibition of EphA7 up-regulation after spinal cord injury reduces apoptosis and promotes locomotor recovery. J Neurosci Res 84:1438–1451

    Article  PubMed  CAS  Google Scholar 

  • Fitch MT, Silver J (1997) Glial cell extracellular matrix: boundaries for axon growth in development and regeneration. Cell Tissue Res 290:379–384

    Article  PubMed  CAS  Google Scholar 

  • Fitch MT, Doller C, Combs CK, Landreth GE, Silver J (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–8198

    PubMed  CAS  Google Scholar 

  • Fournier AE, Strittmatter SM (2001) Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol 11:89–94

    Article  PubMed  CAS  Google Scholar 

  • Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109:297–324

    Article  PubMed  CAS  Google Scholar 

  • Franke H, Krugel U, Schmidt R, Grosche J, Reichenbach A, Illes P (2001) P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol 134:1180–1189

    Article  PubMed  CAS  Google Scholar 

  • Franke H, Krugel U, Illes P (2006) P2 receptors and neuronal injury. Pflugers Arch 452:622–644

    Article  PubMed  CAS  Google Scholar 

  • Franke H, Sauer C, Rudolph C, Krügel U, Hengstler JG, Illes P (2009) P2 receptor-mediated stimulation of the PI3-K/Akt-pathway in vivo. Glia 57:1031–1045

    Article  PubMed  CAS  Google Scholar 

  • Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    PubMed  CAS  Google Scholar 

  • Hansson E, Ronnback L (2003) Glial neuronal signaling in the central nervous system. FASEB J 17:341–348

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  PubMed  CAS  Google Scholar 

  • Hulsebosch CE (2002) Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ 26:238–255

    PubMed  Google Scholar 

  • Iannotti C, Zhang YP, Shields LB et al (2006) Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J Neurotrauma 23:853–865

    Article  PubMed  Google Scholar 

  • Irizarry-Ramirez M, Willson CA, Cruz-Orengo L et al (2005) Upregulation of EphA3 receptor after spinal cord injury. J Neurotrauma 22:929–935

    Article  PubMed  Google Scholar 

  • Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009) Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal 5:75–89

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Gondo T, Hoshii Y, Takahashi M, Yamada M, Ishihara T (1998) Confocal observation of senile plaques in Alzheimer's disease: senile plaque morphology and relationship between senile plaques and astrocytes. Pathol Int 48:332–340

    Article  PubMed  CAS  Google Scholar 

  • Kharlamov A, Jones SC, Kim DK (2002) Suramin reduces infarct volume in a model of focal brain ischemia in rats. Exp Brain Res 147:353–359

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Fukuoka T, Yamanaka H et al (2006) Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498:443–454

    Article  PubMed  CAS  Google Scholar 

  • Laird MD, Vender JR, Dhandapani KM (2008) Opposing roles for reactive astrocytes following traumatic brain injury. Neurosignals 16:154–164

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht G, Braun K, Damer M et al (2002) Structure–activity relationships of suramin and pyridoxal-5′-phosphate derivatives as P2 receptor antagonists. Curr Pharm Des 8:2371–2399

    Article  PubMed  CAS  Google Scholar 

  • Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE (1994) Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol 4:259–275

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997) Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation. J Biol Chem 272:24348–24354

    Article  PubMed  CAS  Google Scholar 

  • McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63:109–115

    Article  PubMed  CAS  Google Scholar 

  • McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805–811

    Article  PubMed  CAS  Google Scholar 

  • Merkler D, Metz GA, Raineteau O, Dietz V, Schwab ME, Fouad K (2001) Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci 21:3665–3673

    PubMed  CAS  Google Scholar 

  • Miranda JD, White LA, Marcillo AE, Willson CA, Jagid J, Whittemore SR (1999) Induction of Eph B3 after spinal cord injury. Exp Neurol 156:218–222

    Article  PubMed  CAS  Google Scholar 

  • Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129:2761–2772

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Bregman BS (2001) Differences in neurotrophic factor gene expression profiles between neonate and adult rat spinal cord after injury. Exp Neurol 169:407–415

    Article  PubMed  CAS  Google Scholar 

  • Neary JT, Baker L, Jorgensen SL, Norenberg MD (1994) Extracellular ATP induces stellation and increases glial fibrillary acidic protein content and DNA synthesis in primary astrocyte cultures. Acta Neuropathol 87:8–13

    Article  PubMed  CAS  Google Scholar 

  • Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Nakamura M, Mikami Y et al (2004) Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 76:265–276

    Article  PubMed  CAS  Google Scholar 

  • Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774

    Article  PubMed  Google Scholar 

  • Pasterkamp RJ, Anderson PN, Verhaagen J (2001) Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A. Eur J Neurosci 13:457–471

    Article  PubMed  CAS  Google Scholar 

  • Peng W, Cotrina ML, Han X et al (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci USA 106:12489–12493

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158:351–365

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, van Rooijen N, Hickey WF, Preidis G, McGaughy V (2003) Hematogenous macrophages express CD8 and distribute to regions of lesion cavitation after spinal cord injury. Exp Neurol 182:275–287

    Article  PubMed  CAS  Google Scholar 

  • Rathbone MP, Middlemiss PJ, Gysbers JW et al (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Zayas AE, Torrado AI, Miranda JD (2010) P2Y2 receptor expression is altered in rats after spinal cord injury. Int J Dev Neurosci 28:413–421

    Article  PubMed  CAS  Google Scholar 

  • Santiago JM, Rosas O, Torrado AI, Gonzalez MM, Kalyan-Masih PO, Miranda JD (2009) Molecular, anatomical, physiological, and behavioral studies of rats treated with buprenorphine after spinal cord injury. J Neurotrauma 26:1783–1793

    Article  PubMed  Google Scholar 

  • Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20:1435–1445

    PubMed  CAS  Google Scholar 

  • Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343:269–272

    Article  PubMed  CAS  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman A, Aschner M (2010) Role of astrocytes in brain function and disease. Toxicol Pathol 39(1):115–123

    Article  PubMed  Google Scholar 

  • Sinescu C, Popa F, Grigorean VT et al (2010) Molecular basis of vascular events following spinal cord injury. J Med Life 3:254–261

    PubMed  Google Scholar 

  • Skaper SD, Facci L, Culbert AA et al (2006) P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro. Glia 54:234–242

    Article  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Tanhoffer RA, Yamazaki RK, Nunes EA et al (2007) Glutamine concentration and immune response of spinal cord-injured rats. J Spinal Cord Med 30:140–146

    PubMed  Google Scholar 

  • Tompkins JD, Parsons RL (2006) Exocytotic release of ATP and activation of P2X receptors in dissociated guinea pig stellate neurons. Am J Physiol Cell Physiol 291:C1062–C1071

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Arcuino G, Takano T et al (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827

    Article  PubMed  CAS  Google Scholar 

  • Washburn KB, Neary JT (2006) P2 purinergic receptors signal to STAT3 in astrocytes: difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience 142:411–423

    Article  PubMed  CAS  Google Scholar 

  • Weisman GA, Wang M, Kong Q et al (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31:169–183

    Article  PubMed  CAS  Google Scholar 

  • Widenfalk J, Lundstromer K, Jubran M, Brene S, Olson L (2001) Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 21:3457–3475

    PubMed  CAS  Google Scholar 

  • Williams A, Piaton G, Lubetzki C (2007) Astrocytes—friends or foes in multiple sclerosis? Glia 55:1300–1312

    Article  PubMed  Google Scholar 

  • Willson CA, Irizarry-Ramirez M, Gaskins HE et al (2002) Upregulation of EphA receptor expression in the injured adult rat spinal cord. Cell Transplant 11:229–239

    PubMed  Google Scholar 

  • Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS (2010) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41:232–241

    Article  PubMed  Google Scholar 

  • Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflugers Arch 452:573–588

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Luz C. Arocho and Laurivette Mosquera for the excellent technical assistance during surgeries and post-operatory procedures. Special thanks also to the personnel of the Animal Resources Center (University of Puerto Rico, Medical Science Campus) and the Experimental Surgery facilities. Our gratitude to Jose O. Garcia, Ph.D. for his critiques in the manuscript. This work was in partial fulfillment of Ana E. Rodríguez-Zayas doctoral dissertation and was supported by NIH-MRISP (2 R24 MH 48190–14), NIH-SNRP (NS39405), MBRS- SCORE (S06-GM008224), MBRS-RISE (GM-68138) and the Associated Deanship of Biomedical Sciences and Graduate Studies of the UPR School of Medicine. Editorial support was provided by Dr. Mary Helen Mays, Puerto Rico Clinical and Translational Research Consortium, funded by the National Center for Research Resources (NCRR) (1U54RR026139-01A1), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge D. Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Zayas, A.E., Torrado, A.I., Rosas, O.R. et al. Blockade of P2 Nucleotide Receptors After Spinal Cord Injury Reduced the Gliotic Response and Spared Tissue. J Mol Neurosci 46, 167–176 (2012). https://doi.org/10.1007/s12031-011-9567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9567-6

Keywords

Navigation