Skip to main content
Log in

General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast cells are often subjected to various types of weak acid stress in the process of industrial production, food processing, and preservation, resulting in growth inhibition and reduced fermentation performance. Under acidic conditions, weak acids enter the near-neutral yeast cytoplasm and dissociate into protons and anions, leading to cytoplasmic acidification and cell damage. Although some yeast strains have developed the ability to survive weak acids, the complexity and diversity of stresses during industrial production still require the application of appropriate strategies for phenotypes improvement. In this review, we summarized current knowledge concerning weak acid stress response and resistance, which may suggest important targets for further construction of more robust strains. We also highlight current feasible strategies for improving the weak acid resistance of yeasts, such as adaptive laboratory evolution, transcription factors engineering, and cell membrane/wall engineering. Moreover, the challenges and perspectives associated with improving the competitiveness of industrial strains are also discussed. This review provides effective strategies for improving the industrial phenotypes of yeast from multiple dimensions in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abbott DA, Knijnenburg TA, De Poorter LM, Reinders MJ, Pronk JT, Van Maris AJ (2007) Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 7(6):819–833

    Article  CAS  PubMed  Google Scholar 

  • Alves R, Sousa-Silva M, Vieira D, Soares P, Chebaro Y, Lorenz MC, Casal M, Soares-Silva I, Paiva S (2020) Carboxylic acid transporters in Candida pathogenesis. mBio 11(3):e00156–e00120

    Article  PubMed  PubMed Central  Google Scholar 

  • Ask M, Mapelli V, Höck H, Olsson L, Bettiga M (2013) Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact 12:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Aufschnaiter A, Büttner S (2019) The vacuolar shapes of ageing: from function to morphology. Biochim Biophys Acta Mol Cell Res 1866(5):957–970

    Article  CAS  PubMed  Google Scholar 

  • Baek SH, Kwon EY, Kim YH, Hahn JS (2016) Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100(6):2737–2748

    Article  CAS  PubMed  Google Scholar 

  • Balderas-Hernández VE, Correia K, Mahadevan R (2018) Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid. J Ind Microbiol Biotechnol 45(8):735–751

    Article  PubMed  Google Scholar 

  • Berterame NM, Porro D, Ami D, Branduardi P (2016) Protein aggregation and membrane lipid modifications under lactic acid stress in wild type and OPI1 deleted Saccharomyces cerevisiae strains. Microb Cell Fact 15:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Cámara E, Olsson L, Zrimec J, Zelezniak A, Geijer C, Nygrd Y (2022) Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 57:107947

    Article  PubMed  Google Scholar 

  • Chen L, Xin QH, Ma LM, Li RF, Bian K (2020) Applications and research advance of genome shuffling for industrial microbial strains improvement. World J Microbiol Biotechnol 36(10):158

    Article  PubMed  Google Scholar 

  • Cheng Y, Zhu H, Du Z, Guo X, Zhou C, Wang Z, He X (2021) Eukaryotic translation factor eIF5A contributes to acetic acid tolerance in Saccharomyces cerevisiae via transcriptional factor Ume6p. Biotechnol Biofuels 14(1):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins ME, Black JJ, Liu Z (2017) Casein kinase I isoform Hrr25 is a negative regulator of Haa1 in the weak acid stress response pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 83(13):e00672–e00617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coradini ALV, da Silveira Bezerra F, Furlan M, Maneira C, Carazzolle MF, Pereira GAG, Teixeira GS (2021) QTL mapping of a Brazilian bioethanol strain links the cell wall protein-encoding gene GAS1 to low pH tolerance in S. Cerevisiae. Biotechnol Biofuels 14(1):239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dato L, Berterame NM, Ricci MA, Paganoni P, Palmieri L, Porro D, Branduardi P (2014) Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae. Microb Cell Fact 13(1):147

    PubMed  PubMed Central  Google Scholar 

  • Du C, Li Y, Xiang R, Yuan W (2022a) Formate dehydrogenase improves the resistance to formic acid and acetic acid simultaneously in Saccharomyces cerevisiae. Int J Mol Sci 23(6):3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Fu Y, Deng N, Xu Y (2022b) Transcriptional profiling reveals adaptive response and tolerance to lactic acid stress in Pichia kudriavzevii. Foods 11(18):2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada E, Agostinis P, Vandenheede JR, Goris J, Merlevede W, François J, Goffeau A, Ghislain M (1996) Phosphorylation of yeast plasma membrane H+-ATPase by casein kinase I. J Biol Chem 271(50):32064–32072

    Article  CAS  PubMed  Google Scholar 

  • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337(1):95–103

    Article  CAS  PubMed  Google Scholar 

  • Ferraz L, Vorauer-Uhl K, Sauer M, Sousa MJ, Branduardi P (2023) Impact of ergosterol content on acetic and lactic acids toxicity to Saccharomyces cerevisiae. Yeast 40(3–4):152–165

    Article  CAS  PubMed  Google Scholar 

  • Greetham D, Takagi H, Phister TP (2014) Presence of proline has a protective effect on weak acid stressed Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 105(4):641–652

    Article  CAS  PubMed  Google Scholar 

  • Gregori C, Schüller C, Frohner IE, Ammerer G, Kuchler K (2008) Weak organic acids trigger conformational changes of the yeast transcription factor War1 in vivo to elicit stress adaptation. J Biol Chem 283(37):25752–25764

    Article  CAS  PubMed  Google Scholar 

  • Groot PWD, Ruiz C, Vázquez de Aldana CR, Duenas E, Cid VJ, Rey FD, Rodríquez-Peña JM, Pérez P, Andel A, Caubín J, Arroyo J, García JC, Gil C, Molina M, García LJ, Nombela C, Klis FM (2001) A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2(3):124–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu H, Zhu Y, Peng Y, Liang X, Liu X, Shao L, Xu Y, Xu Z, Liu R, Li J (2019) Physiological mechanism of improved tolerance of Saccharomyces cerevisiae to lignin-derived phenolic acids in lignocellulosic ethanol fermentation by short-term adaptation. Biotechnol Biofuels 12(1):268

    Article  PubMed  PubMed Central  Google Scholar 

  • Guaragnella N, Bettiga M (2021) Acetic acid stress in budding yeast: from molecular mechanisms to applications. Yeast 38(7):391–400

    Article  CAS  PubMed  Google Scholar 

  • Guaragnella N, Stirpe M, Marzulli D, Mazzoni C, Giannattasio S (2019) Acid stress triggers resistance to acetic acid-induced regulated cell death through Hog1 activation which requires RTG2 in yeast. Oxid Med Cell Longev 2019:1–9

    Article  Google Scholar 

  • Guerreiro JF, Muir A, Ramachandran S, Thorner J, Sá-Correia I (2016) Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress. Biochem J 473(23):4311–4325

    Article  CAS  PubMed  Google Scholar 

  • Guo ZP, Khoomrung S, Nielsen J, Olsson L (2018) Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. Biotechnol Biofuels 11:297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Li M, Guo Z, Zhu R, Xin Y, Gu Z, Zhang L (2023) Trehalose metabolism targeting as a novel strategy to modulate acid tolerance of yeasts and its application in food industry. Food Microbiol 114:104300

    Article  CAS  PubMed  Google Scholar 

  • Han J, Backa SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harner NK, Bajwa PK, Habash MB, Trevors JT, Austin GD, Lee H (2014) Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid. Antonie Van Leeuwenhoek 105(1):29–43

    Article  CAS  PubMed  Google Scholar 

  • Holyavkin C, Turanlı-Yıldız B, Yılmaz Ü, Alkım C, Arslan M, Topaloğlu A, Kısakesen Hİ, de Billerbeck G, François JM, Çakar ZP (2023) Genomic, transcriptomic, and metabolic characterization of 2-Phenylethanol-resistant Saccharomyces cerevisiae obtained by evolutionary engineering. Front Microbiol 11:141148065

    Google Scholar 

  • Hospet R, Thangadurai D, Cruz-Martins N, Sangeetha J, Anu Appaiah KA, Chowdhury ZZ, Bedi N, Soytong K, Al Tawahaj ARM, Jabeen S, Tallur MM (2023) Genome shuffling for phenotypic improvement of industrial strains through recursive protoplast fusion technology. Crit Rev Food Sci Nutr 63(17):2960–2969

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Dong Y, Wang W, Zhang W, Lou H, Chen Q (2019) Deletion of Atg22 gene contributes to reduce programmed cell death induced by acetic acid stress in Saccharomyces cerevisiae. Biotechnol Biofuels 12(1):298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inaba T, Watanabe D, Yoshiyama Y, Tanaka K, Ogawa J, Takagi H, Shimoi H, Shima J (2013) An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express 3(1):74

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail KSK, Sakamoto T, Hasunuma T, Zhao XQ, Kondo A (2014) Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Biotechnol J 9(12):1519–1525

    Article  CAS  PubMed  Google Scholar 

  • Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6(6):924–936

    Article  CAS  PubMed  Google Scholar 

  • Kawazoe N, Kimata Y, Izawa S (2017) Acetic acid causes endoplasmic reticulum stress and induces the unfolded protein response in Saccharomyces cerevisiae. Front Microbiol 8:1192

    Article  PubMed  PubMed Central  Google Scholar 

  • Kildegaard KR, Hallström BM, Blicher TH, Sonnenschein N, Jensen NB, Sherstyk S, Harrison SJ, Maury J, Herrgård MJ, Juncker AS, Forster J, Nielsen J, Borodina I (2014) Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 26:57–66

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Cho KH, Park KH, Jang J, Hahn JS (2019) Activation of Haa1 and War1 transcription factors by differential binding of weak acid anions in Saccharomyces cerevisiae. Nucleic Acids Res 47(3):1211–1224

    Article  CAS  PubMed  Google Scholar 

  • Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K (2012) Flexibility of a eukaryotic lipidome - insights from yeast lipidomics. PLoS ONE 7(4):e35063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konarzewska P, Sherr GL, Ahmed S, Ursomanno B, Shen CH (2017) Vma3p protects cells from programmed cell death through the regulation of Hxk2p expression. Biochem Biophys Res Commun 493(1):233–239

    Article  CAS  PubMed  Google Scholar 

  • Kren A, Mamnun YM, Bauer BE, Schüller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23(5):1775–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanze CE, Gandra RM, Foderaro JE, Swenson KA, Douglas LM, Konopka JB (2020) Plasma membrane MCC/eisosome domains promote stress resistance in fungi. Microbiol Mol Biol Rev 84(4):e00063–e00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence CL, Botting CH, Antrobus R, Coote PJ (2004) Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24(8):3307–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecchi S, Nelson CJ, Allen KE, Swaney DL, Thompson KL, Coon JJ, Sussman MR, Slayman CW (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem 282(49):35471–35481

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim P (2020) Current status and applications of adaptive laboratory evolution in industrial microorganisms. J Microbiol Biotechnol 30(6):793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Reiter W, Dohnal I, Gregori C, Beese-Sims S, Kuchler K, Ammerer G, Levin DE (2013) MAPK Hog1 closes the S. Cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27(23):2590–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Nasution O, Choi E, Choi IG, Kim W, Choi W (2015) Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl Microbiol Biotechnol 99(15):6391–6403

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Nasution O, Lee YM, Kim E, Choi W, Kim W (2017) Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101(1):229–239

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wu Z, Li R, Miao Y, Weng P, Wang L (2020) Integrated transcriptomic and proteomic analysis of the acetic acid stress in Issatchenkia Orientalis. J Food Biochem 44(6):e13203

    Article  CAS  PubMed  Google Scholar 

  • Li C, Lu J, Yan XJ, Li CW, Lin LC, Xiao DG, Zhang CY (2023a) The eisosomes contribute to acid tolerance of yeast by maintaining cell membrane integrity. Food Microbiol 110:104157

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hou S, Ren Z, Fu S, Wang S, Chen M, Dang Y, Li H, Li S, Li P (2023b) Transcriptomic analysis reveals hub genes and pathways in response to acetic acid stress in Kluyveromyces marxianus during high-temperature ethanol fermentation. Stress Biol 3(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang G, Zhou P, Lu J, Liu H, Qi Y, Gao C, Guo L, Hu G, Chen X, Liu L (2021) Dynamic regulation of membrane integrity to enhance l-malate stress tolerance in Candida Glabrata. Biotechnol Bioeng 118(11):4347–4359

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Qi Y, Yan D, Liu H, Chen X, Liu L (2017) CgMED3 changes membrane sterol composition to help Candida Glabrata tolerate low-pH stress. Appl Environ Microbiol 83(17):e00972–e00917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl L, Genheden S, Eriksson LA, Olsson L, Bettiga M (2016) Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces Bailii. Biotechnol Bioeng 113(4):744–753

    Article  CAS  PubMed  Google Scholar 

  • Lindberg L, Santos AX, Riezman H, Olsson L, Bettiga M (2013) Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces Bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS ONE 8(9):e73936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yuan W, Zhou P, Liang G, Gao C, Guo L, Hu G, Song W, Wu J, Chen X, Liu L (2022) Engineering membrane asymmetry to increase medium-chain fatty acid tolerance in Saccharomyces cerevisiae. Biotechnol Bioeng 119(1):277–286

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Jin K, Yi Y, Song L, Xiu X, Liu Y, Li J, Du G, Chen J, Liu L (2023) Analysis of acid-tolerance mechanism based on membrane microdomains in Saccharomyces cerevisiae. Microb Cell Fact 22(1):180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Wei X, Sun C, Zhang F, Xu J, Zhao X, Bai F (2015) Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl Microbiol Biotechnol 99(5):2441–2449

    Article  CAS  PubMed  Google Scholar 

  • Magocha TA, Zabed H, Yang M, Yun J, Zhang H, Qi X (2018) Improvement of industrially important microbial strains by genome shuffling: current status and future prospects. Bioresour Technol 257:281–289

    Article  CAS  PubMed  Google Scholar 

  • Malakar D, Dey A, Ghosh AK (2006) Protective role of S-adenosyl-L-methionine against hydrochloric acid stress in Saccharomyces cerevisiae. Biochim Biophys Acta 1760(9):1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Malakar D, Dey A, Basu A, Ghosh AK (2008) Antiapoptotic role of S-adenosyl-l-methionine against hydrochloric acid induced cell death in Saccharomyces cerevisiae. Biochim Biophys Acta 1780(7–8):937–947

    Article  CAS  PubMed  Google Scholar 

  • Martani F, Marano F, Bertacchi S, Porro D, Branduardi P (2015) The Saccharomyces cerevisiae poly(A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes. Sci Rep 5(1):18318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Muñoz GA, Kane P (2017) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 292(19):7743

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsushika A, Negi K, Suzuki T, Goshima T, Hoshino T (2016) Identification and characterization of a novel Issatchenkia orientalis GPI-anchored protein, IoGas1, required for resistance to low pH and salt stress. PLoS ONE 11(9):e0161888

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsushika A, Suzuki T, Goshima T, Hoshino T (2017) Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress. J Biosci Bioeng 124(2):164–170

    Article  CAS  PubMed  Google Scholar 

  • Meena RC, Thakur S, Chakrabarti A (2011) Regulation of Saccharomyces cerevisiae plasma membrane H(+)-ATPase (Pma1) by dextrose and Hsp30 during exposure to thermal stress. Indian J Microbiol 51(2):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira NP, Lourenço AB, Fernandes AR, Becker JD, Sá-Correia I (2009) The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res 9(2):202–216

    Article  CAS  PubMed  Google Scholar 

  • Mira NP, Becker JD, Sá-Correia I (2010) Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 14(5):587–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sá-Correia I (2011) Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res 39(16):6896–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6(8):1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27(18):6446–6456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morsomme P, Slayman CW, Goffeau A (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H(+)-ATPase. Biochim Biophys Acta 1469(3):133–157

    Article  CAS  PubMed  Google Scholar 

  • Narayanan V, Sànchez i Nogué V, Gorwa-Grauslund MF (2013) Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH. Appl Microbiol Biotechnol 97(16):7517–7525

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanan V, Sànchez i Nogué V, van Niel EWJ, Gorwa-Grauslund MF (2016) Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae. AMB Express 6(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  • Naseri G (2023) A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nat Commun 14(1):1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC (2023) Non-conventional yeast strains: unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 63:108100

    Article  CAS  PubMed  Google Scholar 

  • Nugroho RH, Yoshikawa K, Shimizu H (2015) Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng 120(4):396–404

    Article  CAS  PubMed  Google Scholar 

  • Nygård Y, Mojzita D, Toivari M, Penttilä M, Wiebe MG, Ruohonen L (2014) The diverse role of Pdr12 in resistance to weak organic acids. Yeast 31(6):219–232

    Article  PubMed  Google Scholar 

  • Pacheco A, Talaia G, Sá-Pessoa J, Bessa D, Gonçalves MJ, Moreira R, Paiva S, Casal M, Queirós O (2012) Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2. FEMS Yeast Res 3:375–381

    Article  Google Scholar 

  • Palma M, Dias PJ, Roque FC, Luzia L, Guerreiro JF, Sá-Correia I (2017) The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2. BMC Genomics 18(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  • Palma M, Guerreiro JF, Sá-Correia I (2018) Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Front Microbiol 9:274

    Article  PubMed  PubMed Central  Google Scholar 

  • Peetermans A, Foulquié-Moreno MR, Thevelein JM (2021) Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. Microb Cell 8(6):111–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira RR, Castanheira D, Teixeira JA, Bouillet LE, Ribeiro EM, Trópia MM, Alvarez F, Correa LF, Mota BE, Conceiçao LE, Castro IM, Brandao RL (2015) Detailed search for protein kinase(s) involved in plasma membrane H+-ATPase activity regulation of yeast cells. FEMS Yeast Res 15(2):fov003

    Article  PubMed  Google Scholar 

  • Pereira R, Wei Y, Mohamed E, Radi M, Malina C, Herrgård MJ, Feist AM, Nielsen J, Chen Y (2019) Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng 56:130–141

    Article  CAS  PubMed  Google Scholar 

  • Pereira R, Mohamed ET, Radi MS, Herrgård MJ, Feist AM, Nielsen J, Chen Y (2020) Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution. P Natl Acad Sci USA 117(45):27954–27961

    Article  CAS  Google Scholar 

  • Qi Y, Liu H, Yu J, Chen X, Liu L (2017) Med15B regulates acid stress response and tolerance in Candida Glabrata by altering membrane lipid composition. Appl Environ Microbiol 83(18):e01128–e01117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Xu N, Li Z, Wang J, Meng X, Gao C, Chen J, Chen W, Chen X, Liu L (2022) Mediator ngineering of Saccharomyces cerevisiae to improve multidimensional stress tolerance. Appl Environ Microbiol 88(8):e0162721

    Article  PubMed  Google Scholar 

  • Qin L, Dong S, Yu J, Ning X, Xu K, Zhang SJ, Xu L, Li BZ, Li J, Yuan YJ, Li C (2020) Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metab Eng 61:160–170

    Article  CAS  PubMed  Google Scholar 

  • Raghavendran V, Marx C, Olsson L, Bettiga M (2020) The protective role of intracellular glutathione in Saccharomyces cerevisiae during lignocellulosic ethanol production. AMB Express 10(1):219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro RA, Vitorino MV, Godinho CP, Bourbon-Melo N, Robalo TT, Fernandes F, Rodrigues MS, Sá-Correia I (2021) Yeast adaptive response to acetic acid stress involves structural alterations and increased stiffness of the cell wall. Sci Rep 11(1):12652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro RA, Godinho CP, Vitorino MV, Robalo TT, Fernandes F, Rodrigues MS, Sá-Correia I (2022) Crosstalk between yeast cell plasma membrane ergosterol content and cell wall stiffness under acetic acid stress involving Pdr18. J Fungi (Basel) 8(2):103

    Article  CAS  PubMed  Google Scholar 

  • Salas-Navarrete PC, de Oca Miranda AIM, Martinez A, Caspeta L (2022) Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature. Appl Microbiol Biotechnol 106(1):383–399

    Article  CAS  PubMed  Google Scholar 

  • Sanford A, Kiriakov S, Khalil AS (2022) A toolkit for precise, multigene control in Saccharomyces cerevisiae. ACS Synth Biol 11(12):3912–3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schüller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15(2):706–720

    Article  PubMed  PubMed Central  Google Scholar 

  • Sha Y, Zhou L, Wang Z, Ding Y, Lu M, Xu Z, Zhai R, Jin M (2023) Adaptive laboratory evolution boost Yarrowia Lipolytica tolerance to vanillic acid. J Biotechnol 367:42–52

    Article  CAS  PubMed  Google Scholar 

  • Simões T, Mira NP, Fernandes AR, Sá-Correia I (2006) The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives. Appl Environ Microbiol 72(11):7168–7175

    Article  PubMed  PubMed Central  Google Scholar 

  • So JS, Lee SB, Lee JH, Nam HS, Lee JK (2023) Simultaneous determination of dehydroacetic acid, benzoic acid, sorbic acid, methylparaben and ethylparaben in foods by high-performance liquid chromatography. Food Sci Biotechnol 32(9):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares-Silva I, Ribas D, Foskolou IP, Barata B, Bessa D, Paiva S, Queirós O, Casal M (2015) The Debaryomyces hansenii carboxylate transporters Jen1 homologues are functional in Saccharomyces cerevisiae. FEMS Yeast Res 15(8):fov094

    Article  PubMed  Google Scholar 

  • Sousa-Silva M, Soares P, Alves J, Vieira D, Casal M, Soares-Silva I (2022) Uncovering novel plasma membrane carboxylate transporters in the yeast Cyberlindnera Jadinii. J Fungi 8(1):51

    Article  CAS  Google Scholar 

  • Sugiyama M, Akase SP, Nakanishi R, Horie H, Kaneko Y, Harashima S (2014) Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 80(11):3488–3495

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Zhang Q, Kong X, Liu Y, Li J, Du G, Lv X, Ledesma-Amaro R, Chen J, Liu L (2023) Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae. Bioresour Technol 370:128580

    Article  CAS  PubMed  Google Scholar 

  • Sürmeli Y, Holyavkin C, Topaloğlu A, Arslan M, Kısakesen Hİ, Çakar ZP (2019) Evolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain. World J Microbiol Biotechnol 35(12):183

    Article  PubMed  Google Scholar 

  • Swinnen S, Henriques SF, Shrestha R, Ho PW, Sá-Correia I, Nevoigt E (2017) Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb Cell Fact 16(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Tani M (2018) Mannosylinositol phosphorylceramides and ergosterol coodinately maintain cell wall integrity in the yeast Saccharomyces cerevisiae. FEBS J 285(13):2405–2427

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78(22):8161–8163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira MC, Monteiro PT, Palma M, Costa C, Godinho CP, Pais P, Cavalheiro M, Antunes M, Lemos A, Pedreira T, Sá-Correia I (2018) YEASTRACT: an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae. Nucleic Acids Res 46(D1):D348–D353

    Article  CAS  PubMed  Google Scholar 

  • Thorwall S, Schwartz C, Chartron JW, Wheeldon I (2020) Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat Chem Biol 16(2):113–121

    Article  CAS  PubMed  Google Scholar 

  • Topaloğlu A, Esen Ö, Turanlı-Yıldız B, Arslan M, Çakar ZP (2023) From Saccharomyces cerevisiae to ethanol: unlocking the power of evolutionary engineering in metabolic engineering applications. J Fungi (Basel) 9(10):984

    Article  PubMed  Google Scholar 

  • Tran VG, Zhao H (2022) Engineering robust microorganisms for organic acid production. J Ind Microbiol Biotechnol 49(2):kuab067

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Orij R, Brul S, Smits GJ (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78(23):8377–8387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan C, Zhang M, Fang Q, Xiong L, Zhao X, Hasunuma T, Bai F, Kondo A (2015) The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc. Metallomics 7(2):322–332

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Bai X, Chen DF, Chen FZ, Li BZ, Yuan YJ (2015) Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnol Biofuels 8:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhou L, Lu M, Zhang Y, Perveen S, Zhou H, Wen Z, Xu Z, Jin M (2021) Adaptive laboratory evolution of Yarrowia Lipolytica improves ferulic acid tolerance. Appl Microbiol Biotechnol 105(4):1745–1758

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li Q, Zhang Z, Yin X, Wang B, Yang X (2023) Recent progress in adaptive laboratory evolution of industrial microorganisms. J Ind Microbiol Biotechnol 50(1):kuac023

    Article  CAS  PubMed  Google Scholar 

  • Wawro A (2021) Improvement of acetic acid tolerance in Saccharomyces cerevisiae by novel genome shuffling. Appl Biochem Microbiol 57:180–188

    Article  CAS  Google Scholar 

  • Wei P, Li Z, He P, Lin Y, Jiang N (2011) Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 49(Pt 2):113–120

    Google Scholar 

  • Xi Y, Zhan T, Xu H, Chen J, Bi C, Fan F, Zhang X (2021) Characterization of JEN family carboxylate transporters from the acid-tolerant yeast Pichia kudriavzevii and their applications in succinic acid production. Microb Biotechnol 14(3):1130–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Williams TC, Divne C, Pretorius IS, Paulsen IT (2019) Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol Biofuels 12:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshiyama Y, Tanaka K, Yoshiyama K, Hibi M, Ogawa J, Shima J (2015) Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid. J Biosci Bioeng 119(2):172–175

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhang K, Mehmood MA, Zhao ZK, Bai F, Zhao X (2017) Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid. Bioresour Technol 245(Pt B):1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Zhang MM, Xiong L, Tang YJ, Mehmood MA, Zhao ZK, Bai FW, Zhao XQ (2019) Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. Biotechnol Biofuels 12:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng DQ, Liu TZ, Chen J, Zhang K, Li O, Zhu L, Zhao YH, Wu XC, Wang PM (2013) Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl Microbiol Biotechnol 97(5):2067–2076

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors immensely thank the Figdraw platform for the drawing Figs. 1 and 2.

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (LQ20C200015) and Basic Scientific Research Projects of Wenzhou (2022N0072).

Author information

Authors and Affiliations

Authors

Contributions

M.L. and Y.C. wrote the original manuscript, M.L. prepared figures, X.D. reviewed and revised the manuscript, H.J. overall supervised, conceived, reviewed, and revised the manuscript. All authors have approved the submitted version.

Corresponding authors

Correspondence to Xiameng Dong or Hao Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Chu, Y., Dong, X. et al. General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts. World J Microbiol Biotechnol 40, 49 (2024). https://doi.org/10.1007/s11274-023-03875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03875-y

Keywords

Navigation