Skip to main content
Log in

Evolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Caffeine is a naturally occurring alkaloid, where its major consumption occurs with beverages such as coffee, soft drinks and tea. Despite a variety of reports on the effects of caffeine on diverse organisms including yeast, the complex molecular basis of caffeine resistance and response has yet to be understood. In this study, a caffeine-hyperresistant and genetically stable Saccharomyces cerevisiae mutant was obtained for the first time by evolutionary engineering, using batch selection in the presence of gradually increased caffeine stress levels and without any mutagenesis of the initial population prior to selection. The selected mutant could resist up to 50 mM caffeine, a level, to our knowledge, that has not been reported for S. cerevisiae so far. The mutant was also resistant to the cell wall-damaging agent lyticase, and it showed cross-resistance against various compounds such as rapamycin, antimycin, coniferyl aldehyde and cycloheximide. Comparative transcriptomic analysis results revealed that the genes involved in the energy conservation and production pathways, and pleiotropic drug resistance were overexpressed. Whole genome re-sequencing identified single nucleotide polymorphisms in only three genes of the caffeine-hyperresistant mutant; PDR1, PDR5 and RIM8, which may play a potential role in caffeine-hyperresistance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adames NR, Gallegos JE, Peccoud J (2019) Yeast genetic interaction screens in the age of CRISPR/Cas. Curr Genet 65:307–327

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Uscanga B, François J (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274

    Article  CAS  PubMed  Google Scholar 

  • Akache B, Turcotte B (2002) New regulators of drug sensitivity in the family of yeast zinc cluster proteins. J Biol Chem 277(24):21254–21260

    Article  CAS  PubMed  Google Scholar 

  • Alkım C, Benbadis L, Yilmaz U, Cakar ZP, François JM (2013) Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering. Metallomics 5:1043–1060

    Article  PubMed  CAS  Google Scholar 

  • Arslan M, Holyavkin C, Kısakesen HI, Topaloğlu A, Sürmeli Y, Çakar ZP (2018) Physiological and transcriptomic analysis of a chronologically long-lived Saccharomyces cerevisiae strain obtained by evolutionary engineering. Mol Biotechnol 60:468–474

    Article  CAS  PubMed  Google Scholar 

  • Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A (1987) The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 262(35):16871–16879

    CAS  PubMed  Google Scholar 

  • Balzi E, Wang M, Leterme S, Van Dyck L, Goffeau A (1994) PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem 269(3):2206–2214

    CAS  PubMed  Google Scholar 

  • Bentley NJ, Holtzman DA, Flaggs G, Keegan KS, DeMaggio A, Ford JC, Hoekstra M, Jarr AM (1996) The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J 15(23):6641–6651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasina A, de Weyer IV, Laus MC, Luyten WH, Parker AE, McGowan CH (1999) A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr Biol 9(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke PV, Raitt DC, Allen LA, Kellogg EA, Poyton RO (1997) Effects of oxygen concentration on the expression of cytochrome c and cytochrome c oxidase genes in yeast. J Biol Chem 272(23):14705–14712

    Article  CAS  PubMed  Google Scholar 

  • Çakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578

    Article  PubMed  CAS  Google Scholar 

  • Çakar ZP, Alkım C, Turanlı B, Tokman N, Akman S, Sarıkaya M, Tamerler C, Benbadis L, Francois JM (2009) Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. J Biotechnol 143:130–138

    Article  PubMed  CAS  Google Scholar 

  • Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz U (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182

    Article  PubMed  CAS  Google Scholar 

  • Camandola S, Plick N, Mattson MP (2019) Impact of coffee and cacao purine metabolites on neuroplasticity and neurodegenerative disease. Neurochem Res 44:214–227

    Article  CAS  PubMed  Google Scholar 

  • Carvajal E, van den Hazel HB, Cybularz-Kolaczkowska A, Balzi E, Goffeau A (1997) Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes. Mol Gen Genet 256(4):406–415

    Article  CAS  PubMed  Google Scholar 

  • Castrejon F, Gomez A, Sanz M, Duran A, Roncero C (2006) The RIM101 pathway contributes to yeast cell wall assembly and its function becomes essential in the absence of mitogen-activated protein kinase Slt2p. Eukaryot Cell 5(3):507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J-C, Hwang J-H (2016) Effects of caffeine on cell viability and activity of histone deacetylase 1 and histone acetyltransferase in glioma cells. Ci Ji Yi Xue Za Zhi 28(3):103–108

    PubMed  Google Scholar 

  • Cui Z, Shiraki T, Hirata D, Miyakawa T (1998) Yeast gene YRR1, which is required for resistance to 4-nitroquinoline N-oxide, mediates transcriptional activation of the multidrug resistance transporter gene SNQ2. Mol Microbiol 29(5):1307–1315

    Article  CAS  PubMed  Google Scholar 

  • De Virgilio C, Loewith R (2006) Cell growth control: little eukaryotes make big contributions. Oncogene 25:6392–6415

    Article  PubMed  CAS  Google Scholar 

  • De Castro PA, Savoldi M, Bonatto D, Malavazi I, Goldman MH, Berretta AA, Goldman GH (2012) Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis. BMC Complement Altern Med 12:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C (1994) PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol Gen Genet 244(5):501–511

    Article  CAS  PubMed  Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivaschenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divate NR, Chen GH, Wang PM et al (2016) Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose. Bioengineered 7:445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downes M, Mehla J, Ananthaswamy N, Wakschlag A, LaMonde M, Dine E, Ambudkar SV, Golin J (2013) The transmission interface of the Saccharomyces cerevisiae multidrug transporter Pdr5: Val-656 located in intracellular loop 2 plays a major role in drug resistance. Antimicrob Agents Chemother 57:1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egner R, Rosenthal FE, Kralli A, Sanglard D, Kuchler K (1998) Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP-binding cassette multidrug resistance transporter. Mol Biol Cell 9(2):523–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Entian KD, Kötter P (2007) Yeast genetic strain and plasmid collections. Methods Microbiol 36:629–666

    Article  CAS  Google Scholar 

  • Ferreira C, Silva S, van Voorst F, Aguiar C, Kielland-Brandt MC, Brandt A, Lucas C (2006) Absence of Gup1p in Saccharomyces cerevisiae results in defective cell wall composition, assembly, stability and morphology. FEMS Yeast Res 6(7):1027–1038

    Article  CAS  PubMed  Google Scholar 

  • François J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145

    Article  PubMed  Google Scholar 

  • Golin J, Ambudkar SV (2015) The multidrug transporter Pdr5 on the 25th anniversary of its discovery: an important model for the study of asymmetric ABC transporters. Biochem J 467(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Hacısalihoğlu B, Holyavkin C, Topaloğlu A, Kısakesen HI, Çakar ZP (2019) Genomic and transcriptomic analysis of a coniferyl aldehyde-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering. FEMS Yeast Res 19(3):foz021

    Article  PubMed  Google Scholar 

  • Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci 96:14866–14870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Fukuzawa T, Sorimachi H, Maeda T (2005) Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 25(21):9478–9490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckman MA, Weil J, De Mejia EG (2010) Caffeine (1,3,7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75(3):77–87

    Article  CAS  Google Scholar 

  • Herrador A, Livas D, Soletto L, Becuwe M, Léon S, Vincent O (2015) Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge. Mol Biol Cell 26(11):2128–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood-DeGrenier JK (2011) Identification of phosphatase 2A-like Sit4-mediated signaling and ubiquitin-dependent protein sorting as modulators of caffeine sensitivity in S. cerevisiae. Yeast 28(3):189–204

    Article  CAS  PubMed  Google Scholar 

  • James J (2004) Critical review of dietary caffeine and blood pressure: a relationship that should be taken more seriously. Psychosom Med 66(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Johnston S, Zavortink M, Debouck C, Hopper J (1986) Functional domains of the yeast regulatory protein GAL4. Proc Natl Acad Sci 83:6553–6557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katzmann DJ, Burnett PE, Golin J, Mahé Y, Moye-Rowley WS (1994) Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol Cell Biol 14(7):4653–4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kihlman BA, Odmark G, Norlen K, Karlsson M-B (1971) Caffeine, caffeine derivatives and chromosomal aberrations, I. The relationship between ATP-concentration and the frequency of 8-ethoxy-caffeine-induced chromosomal exchanges in Vicia faba. Hereditas 68:291–304

    Article  CAS  Google Scholar 

  • Kolaczkowska A, Kolaczkowski M, Delahodde A, Goffeau A (2002) Functional dissection of Pdr1p, a regulator of multidrug resistance in Saccharomyces cerevisiae. Mol Genet Genomics 267:96–106

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowski M, Kolaczowska A, Luczynski J, Witek S, Goffeau A (1998) In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4:143–158

    Article  CAS  PubMed  Google Scholar 

  • Küçükgöze G, Alkım C, Yılmaz U, Kısakesen Hİ, Gündüz S, Akman S, Çakar ZP (2013) Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae. FEMS Yeast Res 13:731–746

    Article  PubMed  CAS  Google Scholar 

  • Kumar G, Keserwani S (2016) Mitotraumatism triggered by alkaloids (caffeine and nicotine) in root meristems of Lathyrus sativus L. (grass pea). Int J Res Bot 6(1):5–9

    Google Scholar 

  • Kuranda K, Leberre V, Sokol S, Palamarczyk G, François J (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signaling pathways. Mol Microbiol 61(5):1147–1166

    Article  CAS  PubMed  Google Scholar 

  • Lane S, Xu H, Oh EJ, Kim H, Lesmana A, Jeong D, Zhang G, Tsai C-S, Jin Y-S, Kim SR (2018) Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae. Sci Rep 8:2613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Mitchell AP (1997) Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling H, Juwono NKP, Teo WS, Liu R, Leong SSJ, Chang MW (2015) Engineering transcription factors to improve tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels 8:231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Barrientos A (2013) Transcriptional regulation of yeast oxidative phosphorylation hypoxic genes by oxidative stress. Antioxid Redox Signal 19(16):1916–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewith R, Hall MN (2011) Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189(4):1177–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucau-Danila A, Delaveau T, Lelandais G, Devaux F, Jacq C (2003) Competitive promoter occupancy by two yeast paralogous transcription factors controlling the multidrug resistance phenomenon. J Biol Chem 278(52):52641–52650

    Article  CAS  PubMed  Google Scholar 

  • Mahé Y, Lemoine Y, Kuchler K (1996) The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J Biol Chem 271:25167–25172

    Article  PubMed  Google Scholar 

  • Mamnun YM, Pandjaitan R, Mahé Y, Delahodde A, Kuchler K (2002) The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol 46(5):1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Mans R, Daran JMG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opinion Biotechnol 50:47–56

    Article  CAS  Google Scholar 

  • Marques MC, Zamarbide-Fores S, Pedelini L, Llopis-Torregrosa V, Yenush L (2015) A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae. FEMS Yeast Res 15(4):fov017

    Article  PubMed  CAS  Google Scholar 

  • Matsui K, Teranishi S, Kamon S, Kuroda K, Ueda M (2008) Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain. J Appl Environ Microbiol 74(13):4222–4225

    Article  CAS  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Simioni C, Leung E, Maclennan S, Baraldi PG, Borea PA (2007) Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1α, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 72(2):395–406

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Yadav SK (2009) Retardation in seedling growth and induction of early senescence in plants upon caffeine exposure is related to its negative effect on rubisco. Photosynthetica 47:293–297

    Article  CAS  Google Scholar 

  • Mohanpuria P, Kumar V, Yadav SK (2010) Tea caffeine: metabolism, functions and reduction strategies. Food Sci Biotechnol 19(2):275–287

    Article  CAS  Google Scholar 

  • Nehlig A, Debry G (1994) Potential genotoxic, mutagenic and antimutagenic effects of coffee: a review. Mutat Res 317(2):145–162

    Article  CAS  PubMed  Google Scholar 

  • Nehlig A, Daval J-L, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 17:139–170

    Article  CAS  PubMed  Google Scholar 

  • Nijkamp JF, von den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WHM, Klaassen P, Paddon CJ, Platt D, Kötter P, van Ham RC, Reinders MJT, Pronk JT, de Ridder D, Daran J-M (2012) De novo sequencing, assembly, and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papapetridis I, Verhoeven MD, Wiersma SJ, Goudriaan M, van Maris AJA, Pronk JT (2018) Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 18:foy056

    Article  CAS  PubMed Central  Google Scholar 

  • Pennaneach V, Kolodner RD (2004) Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast. Nat Genet 36(6):612–617

    Article  CAS  PubMed  Google Scholar 

  • Rallis C, Codlin S, Bähler J (2013) TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast. Aging Cell 12(4):563–573

    Article  CAS  PubMed  Google Scholar 

  • Raschmanova H, Weninger A, Glieder A, Kovar K, Vogl T (2018) Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: current state and future prospects. Biotechnol Adv 36:641–665

    Article  CAS  PubMed  Google Scholar 

  • Reinke A, Chen J-C-Y, Aronova S, Powers T (2006) Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 281(42):31616–31626

    Article  CAS  PubMed  Google Scholar 

  • Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutledge RM, Esser L, Ma J, Xia D (2011) Toward understanding the mechanism of action of the yeast multidrug resistance transporter Pdr5: a molecular modeling study. J Struct Biol 173:333–344

    Article  CAS  PubMed  Google Scholar 

  • Sabisz M, Skladanowski A (2008) Modulation of cellular response to anticancer treatment by caffeine: inhibition of cell cycle checkpoints, DNA repair and more. Curr Pharm Biotechnol 9:325

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci 102:1911–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ (1996) Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271(5247):357–360

    Article  CAS  PubMed  Google Scholar 

  • Sandlie I, Solberg K, Kleppe K (1980) The effect of caffeine on cell growth and metabolism of thymidine in Escherichia coli. Mutat Res 73:29–41

    Article  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59(17):4375–4382

    CAS  PubMed  Google Scholar 

  • Sasamoto H, Fujii Y, Ashihara H (2015) Effect of purine alkaloids on the proliferation of lettuce cells derived from protoplasts. Nat Prod Commun 10(5):751–754

    PubMed  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:130–166

    Google Scholar 

  • Sauna ZE, Bohn SS, Rutledge R, Dougherty MP, Cronin S, May L, Xia D, Ambudkar SV, Golin J (2008) Mutations define cross-talk between the N-terminal nucleotide-binding domain and transmembrane helix-2 of the yeast multidrug transporter Pdr5: possible conservation of a signaling interface for coupling ATP hydrolysis to drug transport. J Biol Chem 283(50):35010–35022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz H-P, Huppert S, Lorberg A, Heinisch JJ (2002) Rho5p downregulates the yeast cell integrity pathway. J Cell Sci 115:3139–3148

    CAS  PubMed  Google Scholar 

  • Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, Ilkayeva OR, Gooding J, Ching J, Zhou J, Martinez L, Xie S, Bay B-H, Summers SA, Newgard CB, Yen PM (2014) Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 59(4):1366–1380

    Article  CAS  PubMed  Google Scholar 

  • Smardon AM, Kane PM (2014) Loss of vacuolar H+-ATPase activity in organelles signals ubiquitination and endocytosis of the yeast plasma membrane proton pump Pma1p. J Biol Chem 289(46):32316–32326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stovicek V, Holkenbrink C, Borodina I (2017) CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res 17:fox030

    Article  PubMed Central  CAS  Google Scholar 

  • Sundström L, Larsson S, Jönsson LJ (2010) Identification of Saccharomyces cerevisiae genes involved in the resistance to phenolic fermentation inhibitors. Appl Biochem Biotechnol 161:106–115

    Article  PubMed  CAS  Google Scholar 

  • Teixeira MC, Monteiro PT, Palma M, Costa C, Godinho CP, Pais P, Cavalheiro M, Antunes M, Lemos A, Pedreira T, Sá-Correia I (2018) YEASTRACT, an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae. Nucl Acids Res 46(D1):D348–D353

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu Y, Otake K, Nakamura T, Okada R, Miyazaki T, Watanabe K (2015) Multidrug resistance transporters Snq2p and Pdr5p mediate caffeine efflux in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 79(7):1103–1110

    Article  CAS  PubMed  Google Scholar 

  • Turanlı-Yıldız B, Benbadis L, Alkım C, Sezgin T, Akşit A, Gökçe A, Öztürk Y, Baykal AT, Çakar ZP, François JM (2017) In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization. J Biosci Bioeng 124(3):309–318

    Article  PubMed  CAS  Google Scholar 

  • Velivela SD, Kane PM (2018) Compensatory internalization of Pma1 in V-ATPase mutants in Saccharomyces cerevisiae requires calcium- and glucose-sensitive phosphatases. Genetics 208(2):655–672

    Article  CAS  PubMed  Google Scholar 

  • Vialard JE, Gilbert CS, Green CM, Lowndes NF (1998) The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 17(19):5679–5688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Kurihara Y, Sato T, Toh H, Kobayashi H, Sekiguchi T (2009) Gtr1p differentially associates with Gtr2p and Ego1p. Gene 437:32–38

    Article  CAS  PubMed  Google Scholar 

  • Watcharawipas A, Watanabe D, Takagi H (2017) Enhanced sodium acetate tolerance in Saccharomyces cerevisiae by the Thr255Ala mutation of the ubiquitin ligase Rsp5. FEMS Yeast Res 17(8):fox083

    Article  CAS  Google Scholar 

  • Wolfger H, Mahé Y, Parle-McDermott A, Delahodde A, Kuchler K (1997) The yeast ATP binding cassette (ABC) protein genes PDR10 and PDR15 are novel targets for the Pdr1 and Pdr3 transcriptional regulators. FEBS Lett 418(3):269–274

    Article  CAS  PubMed  Google Scholar 

  • Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, Borland AM, Stevenson PC (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339:1202–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Williams TC, Divne C, Pretorius IS, Paulsen IT (2019) Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol Biofuels 12:97

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Levent Üge for technical assistance with HPLC analyses, and our former and present students Ogün Morkoç, Gizem Karabıyık, Diler Kaan Atmaca, and İsmail Can Karaoğlu for their help with the physiological experiments. We also thank Cihan Erdinç Gülsev and Nazlı Kocaefe for technical assistance with the whole genome re-sequencing experiments, Burcu Hacısalihoğlu for fruitful discussions and experimental assistance, Prof. Dr. Oğuz Öztürk for providing propolis and Prof. Dr. Nevin Gül Karagüler for her helpful comments regarding our SNP data.

Funding

The authors received no financial support for the research presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Petek Çakar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sürmeli, Y., Holyavkin, C., Topaloğlu, A. et al. Evolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain. World J Microbiol Biotechnol 35, 183 (2019). https://doi.org/10.1007/s11274-019-2762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2762-2

Keywords

Navigation