Skip to main content

Advertisement

Log in

Large-scale tag/PCR-based gene expression profiling

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An intriguing enigma in molecular biology is how genes within a single genome are differentially expressed in different cell types of a multicellular organism, or in response to different developmental or environmental queues in a single cell type. Quantification of transcript levels on a genome-wide scale, often termed transcript profiling, provides a powerful approach to identifying protein-coding and non-coding RNAs functionally relevant to a given biological process. Indeed, transcriptome analysis has been a key area of biological inquiry for decades and successfully produced discoveries in a multitude of processes and disease states, and in an increasingly large number of organisms. The evolution of technologies with increasing levels of informational content, ranging from hybridization-based technologies such as Northern blot analysis and microarrays to tag/polymerase chain reaction (PCR)- and sequence-based technologies including differential display and SAGE, along with the next-generation sequencing, has provided hope for revealing the molecular details of biological systems as they respond to change. This review is an overview of selected high throughput tag/PCR-based methods for genome-wide expression profiling amenable to high-throughput automated operation in any standard laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DD-PCR:

Differential display polymerase chain reaction

RAP-PCR:

RNA fingerprinting by arbitrarily primed-PCR

RC4D:

Restriction fragment length polymorphism-coupled domain directed differential display

ODD:

Ordered differential display

RFDD:

Restriction fragment differential display

PACS:

Preferential amplification of coding sequences

AFLP:

Amplified fragment length polymorphism

iAFLP:

Introduced amplified fragment length polymorphism

IBDD:

Indexing-based differential display

HiCEP:

High coverage expression profiling

dCSTs:

Differentially expressed coding sequence tags

DRSP:

Double restriction site primers

SMB:

Streptavidin magnetic bead

References

  • Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9(5):745–753

    Article  CAS  Google Scholar 

  • Bahn S, Mimmack M, Ryan M, Caldwell MA, Jauniaux E, Starkey M, Svendsen CN, Emson P (2002) Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with down’s syndrome: a gene expression study. Lancet 359(9303):310–315

    Article  CAS  Google Scholar 

  • Cho BK, Zengler K, Qiu Y, Park YS, Knight EM, Barrett CL, Gao Y, Palsson BØ (2009) The transcription unit architecture of the Escherichia coli genome. Nat Biotechnol 27:1043–1049

    Article  CAS  Google Scholar 

  • Deng S, Zhou H, Xiong R, Lu Y, Yan D, Xing T, Dong L, Tang E, Yang H (2007) Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics. Breast Cancer Res Treat 104(1):21–30

    Article  CAS  Google Scholar 

  • Elabed H, Maatallah M, Hamza R, Chakroun I, Bakhrouf A, Gaddour K (2013) Effect of long-term starvation in salty microcosm on biofilm formation and motility in Pseudomonas aeruginosa. World J Microbiol Biotechnol 29:657–665

    Article  Google Scholar 

  • Farahyar S, Zaini F, Kordbacheh P, Rezaie S, Safara M, Raoofian R, Heidari M (2013) Overexpression of aldo-keto-reductase in azole-resistant clinical isolates of Candida glabrata determined by cDNA–AFLP. DARU J Pharm Sci 21:1

    Article  CAS  Google Scholar 

  • Fischer A, Saedler H, Theissen G (1995) Restriction fragment length polymorphism-coupled domain directed differential display: a highly efficient technique for expression analysis of multigene families. Proc Natl Acad Sci USA 92:5331–5335

    Article  CAS  Google Scholar 

  • Fislage R, Berceanu M, Humboldt Y, Wendt M, Oberender H (1997) Primer design for a prokaryotic differential display RT-PCR. Nucl Acids Res 25:1830–1835

    Article  CAS  Google Scholar 

  • Fuchs B, Zhang K, Bolander ME, Sarkar G (2000) Differential mRNA finger printing by preferential amplification of coding sequences. Gene 258:155–163

    Article  CAS  Google Scholar 

  • Fuchs B, Zhang K, Schabel A, Bolander ME, Sarkar G (2001) Identification of twenty-two candidate markers for human osteogenic sarcoma. Gene 278:245–252

    Article  CAS  Google Scholar 

  • Fukumura R, Takahashi H, Saito T, Tsutsumi Y, Fujimori A, Sato S, Tatsumi K, Araki R, Abe M (2003) A sensitive transcriptome analysis method that can detect unknown transcripts. Nucl Acids Res 31(16):e94

    Article  Google Scholar 

  • Gao D, Huibers RP, Loonen AEHM, Visser RGF, Wolters AA, Bai Y (2014) Down-regulation of acetolactate synthase compromises Ol-1-mediated resistance to powdery mildew in tomato. BMC Plant Biol 14:32

    Article  Google Scholar 

  • Gilad Y, Rifkin SA, Bertone P, Gerstein M, White KP (2005) Multi-species microarrays reveal the effect of sequence divergence on gene expression profiles. Genome Res 15:674–680

    Article  CAS  Google Scholar 

  • Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP (2006) Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature 440:242–245

    Article  CAS  Google Scholar 

  • Gravesen A, Warthoe P, Knøchel S, Thirstrup K (2000) Restriction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative b-glucoside specific PTS system. Microbiology 146:1381–1389

    CAS  Google Scholar 

  • Haag E, Raman V (1994) Effects of primer choice and source of Taq DNA polymerase on the banding patterns of differential display RT-PCR. Biotechniques 17:226–228

    CAS  Google Scholar 

  • Hideno A, Inoue H, Fujii T, Yano S, Tsukahara K, Murakami K, Yunokawa H, Sawayama S (2013) High-coverage gene expression profiling analysis of the cellulase-producing fungus Acremonium cellulolyticus cultured using different carbon sources. Appl Microbiol Biotechnol 97:5483–5492

    Article  CAS  Google Scholar 

  • Hirate Y, Mieda M, Harada T, Yamasu K, Okamoto H (2001) Identification of ephrin-A3 and novel genes specific to the midbrain-MHB in embryonic zebrafish by ordered differential display. Mech Dev 107:83–96

    Article  CAS  Google Scholar 

  • Holt RA, Jones SJ (2008) The new paradigm of flow cell sequencing. Genome Res 18:839–846

    Article  CAS  Google Scholar 

  • Johnson SW, Lissy NA, Miller PD, Testa JR, Ozols RF, Hamilton TC (1996) Identification of zinc finger mRNAs using domain-specific differential display. Anal Biochem 236:348–352

    Article  CAS  Google Scholar 

  • Kagnoff MF, Eckmann L (2001) Analysis of host responses to microbial infection using gene expression profiling. Curr Opin Microbiol 4:246–250

    Article  CAS  Google Scholar 

  • Kawamoto S, Ohnishi T, Kita H, Chisaka O, Okubo K (1999) Expression profiling by iAFLP: a PCR-based method for genome-wide gene expression profiling. Genome Res 9:1305–1312

    Article  CAS  Google Scholar 

  • Kawasaki S, Tanioka H, Yamasaki K, Yokoi N, Komuro A, Kinoshita S (2006) Clusters of corneal epithelial cells reside ectopically in human conjunctival epithelium. Invest Ophthalmol Vis Sci 47(4):1359–1367

    Article  Google Scholar 

  • Li C, Bai Y, Jacobsen E, Visser R, Lindhout P, Bonnema G (2006) Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic-and polygenic resistance responses are mainly in timing. Plant Mol Biol 62(1–2):127–140

    Article  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  CAS  Google Scholar 

  • Lorkowski S, Cullen P (2004) High-throughput analysis of mRNA expression: microarrays are not the whole story. Expert Opin Ther Patents 14(3):377–403

    Article  CAS  Google Scholar 

  • Mahadeva H, Starkey MP, Sheikh FN, Mundy CR, Samani NJ (1998) A simple and efficient method for the isolation of differentially expressed genes. J Mol Biol 284(5):1391–1398

    Article  CAS  Google Scholar 

  • Mardis ER (2008a) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–134

    Article  CAS  Google Scholar 

  • Mardis ER (2008b) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  Google Scholar 

  • Mathieu-Daude F, Trenkle T, Welsh J, Jung B, Vogt T, McClelland M (1999) Identification of differentially expressed genes using RNA fingerprinting by arbitrarily primed polymerase chain reaction. Methods Enzymol 303:309–324

    Article  CAS  Google Scholar 

  • Matz M, Usman N, Shagin D, Bogdanova E, Lukyanov S (1997) Ordered differential display: a simple method for systematic comparison of gene expression profiles. Nucl Acids Res 25(12):2541–2542

    Article  CAS  Google Scholar 

  • McClelland M, Mathieu-Daude F, Welsh J (1995) RNA fingerprinting and differential display using arbitrarily primed PCR. Trends Genet 11:242–246

    Article  CAS  Google Scholar 

  • Pei D, Ma H, Zhang Y, Ma Y, Wang W, Geng H, Wu J, Li C (2011) Virus-induced gene silencing of a putative glutathione S-transferase gene compromised Ol-1-mediated resistance against powdery mildew in tomato. Plant Mol Biol Rep 29(4):972–978

    Article  CAS  Google Scholar 

  • Prashar Y, Weissman SM (1996) Analysis of differential gene expression by display of 3′ end restriction fragments of cDNAs. Proc Natl Acad Sci USA 93:659–663

    Article  CAS  Google Scholar 

  • Prashar Y, Weissman SM (1999) READS: a method for display of 3′-end fragments of restriction enzyme-digested cdnas for analysis of differential gene expression. Methods Enzymol 303:258–271

    Article  CAS  Google Scholar 

  • Rohde M, Hummel R, Pallisgaard N, Podstufka T, Riedel H, Leffers H, Strauss M (1997) Identification and cloning of differentially expressed genes by DDRT-PCR. Methods Mol Biol 67:419–430

    Google Scholar 

  • Sakurai T, Lee H, Kashima M, Saito Y, Hayashi T, Kudome-Takamatsu T, Nishimura O, Agata K, Shibata N (2012) The planarian P2X homolog in the regulation of asexual reproduction. Int J Dev Biol 56:173–182

    Article  CAS  Google Scholar 

  • Schmidlin L, De Bruyne E, Weyens G, Lefebvre M, Gilmer D (2008) Identification of differentially expressed root genes upon rhizomania disease. Mol Plant Pathol 9(6):741–751

    Article  CAS  Google Scholar 

  • Sekiyama E, Nakamura T, Cooper LJ, Kawasaki S, Hamuro J, Fullwood NJ, Kinoshita S (2006) Unique distribution of thrombospondin-1 in human ocular surface epithelium. Invest Ophthalmol Vis Sci 47(4):1352–1358

    Article  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255

    Article  CAS  Google Scholar 

  • Shibata N, Hayashi T, Fukumura R, Fujii J, Kudome-Takamatsu T, Nishimura O, Sano S, Son F, Suzuki N, Araki R, Abe M, Agata K (2012) Comprehensive gene expression analyses in pluripotent stem cells of a planarian, Dugesia japonica. Int J Dev Biol 56:93–102

    Article  CAS  Google Scholar 

  • Sturtevant J (2000) Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clin Microbiol Rev 13(3):408–427

    Article  CAS  Google Scholar 

  • Swaroop A, Xu J, Agarwal N, Weissman SM (1991) A simple and efficient cDNA library procedure: isolation of human retina-specific cDNA clones. Nucl Acids Res 19:1954

    Article  CAS  Google Scholar 

  • Tähtiharju S, Sangwan V, Monroy AF, Dhindsa RS, Borg M (1997) The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta 203:442–447

    Article  Google Scholar 

  • Vos R, Hogers R, Bleeker M, Reijans M, van de Lee R, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new concept for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Vrang N, Meyre D, Froguel P, Jelsing J, Tang-Christense M, Vatin V, Mikkelsen JD, Thirstrup K, Larsen LK, Cullberg KB, Fahrenkrug J, Jacobson P, Sjöström L, Carlsson LMS, Liu Y, Liu X, Deng H-W, Larsen PJ (2010) The imprinted gene Neuronatin is regulated by metabolic status and associated with obesity. Obesity 18(7):1289–1296

    Article  Google Scholar 

  • Vuylsteke M, Peleman JD, van Eijk MJT (2007) AFLP-based transcript profiling (cDNA–AFLP) for genome-wide expression analysis. Nat Protoc 2(6):1399–1413

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  Google Scholar 

  • Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156:287–301

    Article  CAS  Google Scholar 

  • Zhou C-P, Qi Y-P, You X, Yang L-T, Guo P, Ye X, Zhou X-X, Ke F-J, Chen L-S (2013) Leaf cDNA–AFLP analysis of two citrus species differing in manganese tolerance in response to long-term manganese-toxicity. BMC Genom 14:621

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Irian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irian, S. Large-scale tag/PCR-based gene expression profiling. World J Microbiol Biotechnol 30, 2125–2139 (2014). https://doi.org/10.1007/s11274-014-1641-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1641-0

Keywords

Navigation