Skip to main content

Advertisement

Log in

Bioinformatics: new tools and applications in life science and personalized medicine

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

While we have a basic understanding of the functioning of the gene when coding sequences of specific proteins, we feel the lack of information on the role that DNA has on specific diseases or functions of thousands of proteins that are produced. Bioinformatics combines the methods used in the collection, storage, identification, analysis, and correlation of this huge and complex information. All this work produces an “ocean” of information that can only be “sailed” with the help of computerized methods. The goal is to provide scientists with the right means to explain normal biological processes, dysfunctions of these processes which give rise to disease and approaches that allow the discovery of new medical cures. Recently, sequencing platforms, a large scale of genomes and transcriptomes, have created new challenges not only to the genomics but especially for bioinformatics. The intent of this article is to compile a list of tools and information resources used by scientists to treat information from the massive sequencing of recent platforms to new generations and the applications of this information in different areas of life sciences including medicine.

Key points

Biological data mining

Omic approaches

From genotype to phenotype

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen JE, Salzberg SL (2005) JIGSAW: integration of multiple sources of evidence for gene prediction. Bioinformatics 21:3596–3603

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Betel D, Hogue CW (2003) BIND: the biomolecular interaction network database. Nucleic Acids Res 31(1):248–250. https://doi.org/10.1093/nar/gkg056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004a) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004b) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17(4):349–356

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2010) GenBank. Nucleic Acids Res 38(Database issue):D46–D51. https://doi.org/10.1093/nar/gkp1024

    Article  CAS  PubMed  Google Scholar 

  • Bonfield JK, Whitwham A (2010) Gap5--editing the billion fragment sequence assembly. Bioinformatics 26(14):1699–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  CAS  PubMed  Google Scholar 

  • Buza T, Tonui T, Stomeo F, Tiambo C, Katani R, Schilling M, Lyimo B, Gwakisa P, Cattadori IM, Buza J, Kapur V (2019) iMAP: an integrated bioinformatics and visualization pipeline for microbiome data analysis. BMC Bioinformatics 20:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Bystroff C, Shao Y (2002) Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA. Bioinformatics 18(Suppl 1):S54–S61

    Article  PubMed  Google Scholar 

  • Chen C, Natale DA, Finn RD, Huang H, Zhang J, Wu CH, Mazumder R (2011) Representative proteomes: a stable, scalable and unbiased proteome set for sequence analysis and functional annotation. PLoS One 6(4):e18910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Hofestädt R, Taubert J (2019) Integrative bioinformatics: history and future. Journal of Integrative Bioinformatics 16. https://doi.org/10.1515/jib-2019-2001

  • Chordia N, Kumar A (2018) Bioinformatics in drug discovery. SF Protein Sci J 1:1

    Google Scholar 

  • Chou K, Shen H (2010) A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One

  • Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I (2017) CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res 45:D289–D295. https://doi.org/10.1093/nar/gkw1098

    Article  CAS  PubMed  Google Scholar 

  • Di-Lena P, Wu G, Martelli PL, Casadio R, Nardini C (2013) MIMO: an efficient tool for molecular interaction maps overlap. BMC Bioinformatics 14:159 10.1186/1471-2105-14-159. 10.1093/bioinformatics/btn596

    Article  PubMed  PubMed Central  Google Scholar 

  • Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43(Web Server issue):W389–W394. https://doi.org/10.1093/nar/gkv332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019: nucleic acids res. https://doi.org/10.1093/nar/gky995

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2002) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(Web Server issue):W273–W279

    Google Scholar 

  • Ganesan N, Bennett NF, Velauthapillai M, Pattabiraman N, Squier R, Kalyanasundaram B (2005) Web-based interface facilitating sequence-to-structure analysis of BLAST alignment reports. Biotechniques 39(186):188

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) In: The proteomics protocols handbook. Protein identification and analysis tools on the ExPASy server. Springer, pp 571-607

  • Goldberg T, Hamp T, Rost B (2012) LocTree2 predicts localization for all domains of life. Bioinformatics 28(18):i458–i465. https://doi.org/10.1093/bioinformatics/bts390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman D, Domschke K (2014) Making sense of deep sequencing. Int J Neuropsychopharmacol 17(10):1717–1725. https://doi.org/10.1017/S1461145714000789

    Article  CAS  PubMed  Google Scholar 

  • Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, Ahmed J, Urdiales EG, Gewiess A, Jensen LJ, Schneider R, Skoblo R, Russell RB, Bourne PE, Bork P, Preissner R (2008) SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res 36(Database issue):D919–D922. https://doi.org/10.1093/nar/gkm862

    Article  CAS  PubMed  Google Scholar 

  • Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107(1):1–8. https://doi.org/10.1016/j.ygeno.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  • Horler RS, Butcher A, Papangelopoulos N, Ashton PD, Thomas GH (2009) EchoLOCATION: an in silico analysis of the subcellular locations of Escherichia coli proteins and comparison with experimentally derived locations. Bioinformatics 25(2):163–166

    Article  CAS  PubMed  Google Scholar 

  • Hunt SE, McLaren W, Gil L, Thormann A, Schuilenburg H, Sheppard D, Parton A, Armean IM, Trevanion SJ, Flicek P, Cunningham F (2018) Ensembl variation resources. Database Volume 2018 https://doi.org/10.1093/database/bay119

  • Ideker T, Kelley, Shamir R, Karp R (2004) Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data Proceedings: RECOMB 2004, pp. 282-289; J Comput Biol 12: 835–846, 2005

  • Jiang P, Sun K, Lun FMF, Guo AM, Wang H, Chan KCA, Rossa WK, ChiuY M, Lo D, Sun H (2014) Methy-Pipe: an integrated bioinformatics pipeline for whole genome bisulfite sequencing data analysis. PLoS One 9(6):e100360. https://doi.org/10.1371/journal.pone.0100360

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI (2017a) FastPCR: an in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 109:312–319

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Muterko A, Shamekova M, Zhambakin K (2017b) In silico PCR tools a fast primer, probe and advanced searching. Methods Mol Biol 1620:1–31. https://doi.org/10.1007/978-1-4939-7060-5_1

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Tselykh T, Khassenov B, Ramanculov EM (2017c) Introduction on using the FastPCR software and the related Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol 1620:33–64. https://doi.org/10.1007/978-1-4939-7060-5_2

    Article  CAS  PubMed  Google Scholar 

  • Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–152253

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalvari I, Nawrocki EP, Argasinska J, Quinones-Olvera N, Finn RD, Bateman A, Petrov AI (2018) Non-coding RNA analysis using the Rfam database. Curr Protoc Bioinformatics 62(1):e51. https://doi.org/10.1002/cpbi.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan FA, Phillips CD, Baker RJ (2014) Timeframes of speciation, reticulation, and hybridization in the bulldog bat explained through phylogenetic analyses of all genetic transmission elements. Syst Biol 63:96–110

    Article  CAS  PubMed  Google Scholar 

  • Kinjo AR, Suzuki H, Yamashita R, Ikegawa Y, Kudou T, Igarashi R, Kengaku Y, Cho H, Standley MD, Nakagawa A, Nakamura H (2012) Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format. Nucleic Acids Res 40:D453–D460

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Galperin MY (2003) Sequence - evolution - function: computational approaches in comparative genomics. Chapter 3, Information Sources for Genomics. Kluwer Academic, Boston. https://www.ncbi.nlm.nih.gov/books/NBK20256/

  • Kulski JK (2016) Next-generation sequencing – an overview of the history, tools, and “Omic” applications, next generation sequencing-advances, applications and challenges. InTech

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tárraga A, Cheng Y, Cleland I, Faruque N, Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N, Plaister S, Radhakrishnan R, Reddy K, Sobhany S, Ten Hoopen P, Vaughan R, Zalunin V, Cochrane G (2011) The European nucleotide archive. Nucleic Acids Res 39:D28–D31

    Article  CAS  PubMed  Google Scholar 

  • Lekamwasam S, Liyanage C (2013) Editorial. Galle Medical Journal 18(1). https://doi.org/10.4038/gmj.v18i1.5520

  • Li MW, Qi X, Ni M, Lam HM (2013) Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research. Int J Mol Sci 14(6):11444–11483

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobo I (2008) Basic Local Alignment Search Tool (BLAST). Nature Education 1(1):215

    Google Scholar 

  • Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs. Nucleic Acids Res 47(W1):W636–W641. https://doi.org/10.1093/nar/gkz268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magariños MP, Carmona SJ, Crowther GJ, Ralph SA, Roos DS, Shanmugam D, Van Voorhis WC, Agüero F (2012) TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res (Database issue):D1118–D1127. https://doi.org/10.1093/nar/gkr1053

  • Martins IM, Matos M, Costa R, Silva F, Pascoal A, Estevinho LM, Choupina AB (2014) Transglutaminases: recent achievements and new sources. Appl Microbiol Biotechnol 98:6957–6964

    Article  CAS  PubMed  Google Scholar 

  • Martins IM, Meirinho S, Costa R, Cravador A, Choupina A (2019) Cloning, characterization, in vitro and in planta expression of a necrosis-inducing Phytophthora protein 1 gene npp1 from Phytophthora cinnamomi. Mol Biol Rep 46:6453–6462

    Article  CAS  PubMed  Google Scholar 

  • Mehmood MA, Sehar U, Ahmad N (2014) Use of bioinformatics tools in different spheres of life sciences. J Data Mining Genomics Proteomics 5:158. https://doi.org/10.4172/2153-0602.1000158

    Article  Google Scholar 

  • Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo-Marañón M, Hunter F, Junco L, Mugumbate G, Rodriguez-Lopez M, Atkinson F, Bosc N, Radoux CJ, Segura-Cabrera A, Hersey A, Leach AR (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47(D1):D930–D940. https://doi.org/10.1093/nar/gky1075

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Kesarwani AK, Pal D, Nagaraja V (2011) WebGeSTer DB—a transcription terminator database. Nucleic Acids Res 39:129–135

    Article  Google Scholar 

  • Miyazaki S, Sugawara H, Gojobori T, Tateno Y (2003) DNA Data Bank of Japan (DDBJ) in XML. Nucleic Acids Res 31:13–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Münch R, Hiller K, Grote A, Scheer M, Klein J, Schobert M, Jahn D (2005) Virtual footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21:4187–4189

    Article  PubMed  Google Scholar 

  • Nielsen H, Tsirigos KD, Brunak S, von Heijne G (2019) A brief history of protein sorting prediction. Protein J 38:200–216. https://doi.org/10.1007/s10930-019-09838-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okonechnikov K, Golosova O, Fursov M, the UGENE team (2012) Unipro UGENE: a unified bioinformaticstoolkit. Bioinformatics. 28(8):11667. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  Google Scholar 

  • Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H (2014) The MIntAct project-IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(D1):D358–D363. https://doi.org/10.1093/nar/gkt1115

    Article  CAS  PubMed  Google Scholar 

  • Parra G, Blanco E, Guigó R (2000) GeneID in Drosophila. Genome Res 10(4):511–515. https://doi.org/10.1101/gr.10.4.511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450. https://doi.org/10.1093/nar/gky1106

    Article  CAS  PubMed  Google Scholar 

  • Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghava GPS (2002) APSSP2 : a combination method for protein secondary structure prediction based on neural network and example based learning. CASP5. A-132

  • Rampp M, Soddemann T, Lederer H (2006) The MIGenAS integrated bioinformatics toolkit for web-based sequence analysis. Nucleic Acids Res 34:W15–W19. https://doi.org/10.1093/nar/gkl254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resource Coordinators NCBI (2018) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 46(D1):D8–D13. https://doi.org/10.1093/nar/gkx1095

    Article  CAS  Google Scholar 

  • Rodger S, David PJ, James KB (2003a) Analysing sequences using the Staden package and EMBOSS. In: Krawetz SA, Womble DD (eds) Introduction to Bioinformatics. A Theoretical and Practical Approach. Human Press Inc., Totawa, p 07512

    Google Scholar 

  • Rodger S, David PJ, James KB (2003b) Managing sequencing projects in the GAP4 environment. In: Krawetz SA, Womble DD (eds) Introduction to Bioinformatics. A Theoretical and Practical Approach. Human Press Inc., Totawa, p 07512

    Google Scholar 

  • Rost B, Sander C, Schneider R (1994) PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 10:53–60

    CAS  PubMed  Google Scholar 

  • Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210

    Article  CAS  Google Scholar 

  • Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2012) New and continuing developments at PROSITE. Nucleic Acids Res 41:D344–D347. https://doi.org/10.1093/nar/gks1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner W, McLaren W, Slidel T, Finch DK, Butler R, Campbell J, Eghobamien L, Rider D, Kiefer CM, Robinson MJ, Hardman C, Cunningham F, Vaughan T, Flicek P, Huntington CC (2018) Haplosaurus computes protein haplotypes for use in precision drug design. Nat Commun 9:4128. https://doi.org/10.1038/s41467-018-06542-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  • UniProt Consortium (2008) The universal protein resource (UniProt). Nucleic Acids Res 36:D190–D195

    Article  Google Scholar 

  • Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH (2000) Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 25(6):300–302

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb B, Sali A (2016) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 54:5.6.1–5.6.37 John Wiley, Sons, Inc.

    Article  Google Scholar 

  • Weckx S, Del-Favero J, Rademakers R, Claes L, Cruts M, De Jonghe P, Van Broeckhoven C, De Rijk P (2005) novoSNP, a novel computational tool for sequence variation discovery. Genome Res 15:436–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1037

  • Yu CS, Cheng CW, Su WC, Chang KC, Huang SW, Hwang JK, Lu CH (2014) CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One 9(6):e99368. https://doi.org/10.1371/journal.pone.0099368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yunxia W, Song Z, Fengcheng L, Ying Z, Ying Z, Zhengwen W, Runyuan Z, Jiang Z, Yuxiang R, Ying T, Chu Q (2019) Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 48(D1):D1031–D1041. https://doi.org/10.1093/nar/gkz981 ISSN 1362-4962

    Article  CAS  Google Scholar 

  • Zhang S, Zhang L, Wang Y, Liao M, Bi S, Xie Z, Ho C, Wan X (2018) TBC2target: a resource of predicted target genes of tea bioactive compounds. Front Plant Sci 9:211. Published 2018 Feb 22. https://doi.org/10.3389/fpls.2018.00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2019).

Author information

Authors and Affiliations

Authors

Contributions

I.B. and A.C. designed prepared the manuscript; A.C. wrote the manuscript; and I.B. made the corrections including the English text and confirmation of the bibliography and URLs.

Corresponding author

Correspondence to Altino Choupina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

No human participants or animals were involved in this research.

Informed consent

This manuscript is original and submitted with the consent of all authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branco, I., Choupina, A. Bioinformatics: new tools and applications in life science and personalized medicine. Appl Microbiol Biotechnol 105, 937–951 (2021). https://doi.org/10.1007/s00253-020-11056-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-11056-2

Keywords

Navigation