Skip to main content
Log in

Role of Plant Genotype and Soil Conditions in Symbiotic Plant-Microbe Interactions for Adaptation of Plants to Cadmium-Polluted Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We highlighted some of the key problems associated with the use of beneficial microorganisms for improving adaptation of plants to soils, polluted with heavy metals (HMs), especially Cd. Inoculation of pea line SGE and its Cd-tolerant mutant SGECdt with nodule bacteria Rhizobium leguminosarum bv. viciae demonstrated that nodulation process may be disturbed at Cd concentrations below threshold toxicity levels for each partner and the plant genotype plays a major role in nodulation under Cd stress. A comparative mathematical analysis of available information about Cd tolerance, accumulation of HMs (Cd, Cr, Cu, Ni, Pb, Sr and Zn), response to mycorrhizal fungus Glomus sp. and 15 phenotypic traits of 99 pea varieties revealed that (1) the Cd-sensitive varieties were more efficient in exploring the protective potential of symbiosis to compensate their deficit in Cd tolerance and (2) correlations between the studied traits exist and can be helpful for selection of plant-microbe systems adapted to polluted soils. In pot experiment with 11 varieties of Indian mustard, the plant growth-promoting effect of rhizobacterium Variovorax paradoxus 5C-2 negatively correlated with Cd tolerance and shoot Cd concentration of the plants grown in Cd-supplemented soil. In an outdoor pot experiment, inoculation of willow with the ectomycorrhizal fungus Pisolithus tinctorius and a cocktail of rhizobacteria stimulated root exudation, decreased soil pH and increased Cd mobilization in soil and Cd uptake by plants, but decreased plant growth at a moderate contamination level (25 mg Cd kg−1). Opposite effects were observed in highly contaminated soil (77 mg Cd kg−1). We propose a preliminary systematic framework of interactions between these factors that determine the success of microbial inoculation aimed at improving crop performance on HM-polluted soils or enhancing phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abou-Shanab, R. A., Angle, J. S., & Chaney, R. L. (2006). Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology & Biochemistry, 38(9), 2882–2889.

    Article  CAS  Google Scholar 

  • Ahmad, I., Hayat, S., Ahmad, A., Inam, A., & Samiullah, A. (2001). Metal and antibiotic resistance traits in Bradyrhizobium sp. (cajanus) isolated from soil receiving oil refinery wastewater. World Journal of Microbiology & Biotechnology, 17(4), 379–384.

    Article  CAS  Google Scholar 

  • Antipchuk, A. F., Rangelova, V. N., & Tantsiurenko, E. V. (2002). Species and strain sensitivity of diasotrophs to heavy metals. Mikrobiolohichnyi Zhurnal, 64(3), 44–51.

    CAS  Google Scholar 

  • Antonovics, J., & Bradshaw, A. D. (1970). Evolution of closely adjacent plant populations. VIII. Cline patterns in Anthoxanthum odoratum across a mine boundary. Heredity, 25, 349–358.

    Article  Google Scholar 

  • Basta, N. T., Gradwohl, R., Snethen, K. L., & Schroder, J. L. (2001). Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality, 30(4), 1222–1230.

    Article  CAS  Google Scholar 

  • Baum, C., Hrynkiewicz, K., Leinweber, P., & Meißner, R. (2006). Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix x dasyclados). Journal of Plant Nutrition and Soil Science, 169(4), 516–522.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C., Preisfeld, A., Dietz, K.-J., & Stepanok, V. V. (2001). Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47(7), 642–652.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Safronova, V. I., Tsyganov, V. E., Borisov, A. Y., Kozhemyakov, A. P., Stepanok, V. V., Martenson, A. M., Gianinazzi-Pearson, V., & Tikhonovich, I. A. (2003a). Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.). Euphytica, 131(1), 25–35.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Safronova, V. I., Tsyganov, V. E., Borisov, A. Y., Stepanok, V. V., Naumkina, T. S., & Serdyuk, V. P. (2003b). Garden pea: tolerance to cadmium and uptake of heavy metals from soil by pea plants. In Catalogue of the World Collection of VIR, 729 (p. 23). St.-Petersburg: VIR Press.

  • Belimov, A. A., Kunakova, A. M., Safronova, V. I., Stepanok, V. V., Yudkin, L. Y., Alekseev, Y. V., & Kozhemyakov, A. P. (2004). Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology (Microbiologiya), 73(1), 99–106.

    CAS  Google Scholar 

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., & Glick, B. R. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology & Biochemistry, 37(2), 241–250.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Safronova, V. I., Demchinskayaa, S. V., & Dzyuba, O. O. (2007). Intraspecific variability of cadmium tolerance in hydroponically grown Indian mustard (Brassica juncea (L.) Czern.) seedlings. Acta Physiologiae Plantarum, 29(5), 473–478.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Dodd, I. C., Safronova, V. I., Malkov, N. V., Davies, W. J., Tikhonovich, I. A. (2015). The cadmium tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations. Journal of Experimental Botany, doi:10.1093/jxb/eru536.

  • Borisov, A. Y., Tsyganov, V. E., Shtark, O. Y., Jacobi, L. M., Naumkina, T. S., Serdyuk, V. P., & Vishnyakova, M. A. (2002). Pea: symbiotic effectiveness. In Catalogue of the World Collection of VIR, 728 (p. 29). St.-Petersburg: VIR Press.

    Google Scholar 

  • Braud, A., Jézéquel, K., Bazot, S., & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74(2), 280–286.

    Article  Google Scholar 

  • Burd, G. I., Dixon, D. G., & Glick, B. R. (1998). A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Applied and Environmental Microbiology, 64(10), 3663–3668.

    CAS  Google Scholar 

  • Cardoso, P. F., Molina, S. M. G., Pereira, G. J. G., Vitoria, A. P., & Azevedo, R. A. (2002). Response of rice inbred lines to cadmium exposure. Journal of Plant Nutrition, 25(5), 927–944.

    Article  CAS  Google Scholar 

  • Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., Sgorbati, S., & Berta, G. (2005). The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere, 59(1), 21–29.

    Article  CAS  Google Scholar 

  • Dary, M., Chamber-Pérez, M., Palomares, A. J., & Pajuelo, E. (2010). “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177(1–3), 323–330.

    Article  CAS  Google Scholar 

  • Dos Santos Utmazian, M. N., & Wenzel, W. W. (2007). Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. Journal of Plant Nutrition and Soil Science, 170(2), 265–272.

    Article  Google Scholar 

  • Dos Santos Utmazian, M. N., Wieshammer, G., Vega, R., & Wenzel, W. W. (2007a). Hydroponic screening for metal resistance and accumulation of cadmium and zinc in willows and poplars. Environmental Pollution, 148(1), 155–165.

    Article  Google Scholar 

  • Dos Santos Utmazian, M. N., Schweiger, P., Sommer, P., Gorfer, M., Strauss, J., & Wenzel, W. W. (2007b). Influence of Cadophora finlandica and other microbial treatments on cadmium and zinc uptake in willows grown on polluted soils. Plant, Soil and Environment, 53(4), 158–166.

    Google Scholar 

  • Duan, J., Muller, K. M., Charles, T. C., & Glick, B. R. (2009). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microbial Ecology, 57(3), 423–436.

    Article  CAS  Google Scholar 

  • Fatnassi, I. C., Chiboub, M., Saadani, O., Jebara, M., & Jebara, S. H. (2015). Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. Journal of Basic Microbiology, 55(3), 303–311.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2004). Microbial influence on metal mobility and application to bioremediation. Geoderma, 122(2–4), 109–119.

    Article  CAS  Google Scholar 

  • Gepts, P. (2002). A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Science, 42(6), 1780–1790.

    Article  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28(3), 367–374.

    Article  CAS  Google Scholar 

  • Guefrachi, I., Rejili, M., Mahdhi, M., & Mars, M. (2013). Assessing genotypic diversity and symbiotic efficiency of five rhizobial legume interactions under cadmium stress for soil phytoremediation. International Journal of Phytoremediation, 15(10), 938–951.

    Article  CAS  Google Scholar 

  • Hao, X., Taghavi, S., Xie, P., Orbach, M. J., Alwathnani, H. A., Rensing, C., & Wei, G. (2014). Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. International Journal of Phytoremediation, 16(2), 179–202.

    Article  CAS  Google Scholar 

  • Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68(1), 139–46.

    Article  CAS  Google Scholar 

  • Huff, D. R., & Wu, L. (1985). Phenotypic correlation between metal tolerance and morphology in Festuca rubra L. Crop Science, 25(5), 787–789.

    Article  Google Scholar 

  • Jacobi, L. M., Kukalev, A. S., Ushakov, K. V., Tsyganov, V. E., Naumkina, T. S., Provorov, N. A., Borisov, A. Y., & Tikhonovich, I. A. (2000). Polymorphism of garden pea (Pisum sativum L.) for the efficiency of symbiosis with endomycorrhizal fungus Glomus sp. under the conditions of rhizobia inoculation. Agricultural Biology, 3, 94–102 (In Russian).

    Google Scholar 

  • Janousková, M., Pavlıková, D., & Macek Vosátka, M. (2005). Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant and Soil, 272(1), 29–40.

    Article  Google Scholar 

  • Jing, Y., He, Z., & Yang, X. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University SCIENCE B, 8(3), 192–207.

    Article  CAS  Google Scholar 

  • Kamnev, А. А., & Van der Lelie, D. (2000). Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Bioscience Reports, 20(4), 239–258.

    Article  CAS  Google Scholar 

  • Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 355–364.

    Article  CAS  Google Scholar 

  • Kidd, P. S., Diez, J., & Martinez, C. M. (2004). Tolerance and bioaccumulation of heavy metals in five populations of Cistus ladanifer L. subsp. ladanifer. Plant and Soil, 258(1–2), 189–205.

    Article  CAS  Google Scholar 

  • Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer, M., & Sessitsch, A. (2008). Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant and Soil, 304(1–2), 35–44.

    Article  CAS  Google Scholar 

  • Leyval, C., Turnau, K., & Haselwandter, K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 7(3), 139–153.

    Article  CAS  Google Scholar 

  • Lindberg, S., & Greger, M. (2002). Plant genotypic differences under metal deficient and enriched conditions. In M. N. V. Prasad & K. Stralska (Eds.), Physiology and biochemistry of metal toxicity and tolerance in plants (pp. 357–393). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Ma, W., Guinel, F. C., & Glick, B. R. (2003). Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Applied and Environmental Microbiology, 69(8), 4396–4402.

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009). Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 90(2), 831–837.

    Article  Google Scholar 

  • Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29(2), 248–258.

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., Rocha, I., Oliveira, R. S., & Freitas, H. (2015). Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Frontiers in Plant Science, 5, 757.

    Article  Google Scholar 

  • McLaughlin, M. J., Bell, M. J., Wright, G. C., & Cruickshank, J. (1997). Inter- and intra-specific variation in accumulation of cadmium by peanut, soybean, and navy bean. Australian Journal of Agricultural Research, 48(8), 1151–1160.

    Article  Google Scholar 

  • Metwally, A., Safronova, V. I., Belimov, A. A., & Dietz, K.-J. (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 56(409), 167–178.

    CAS  Google Scholar 

  • Nascimento, F. X., Brigido, C., Glick, B. R., & Oliveira, S. (2012). ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiology Letters, 336(1), 26–37.

    Article  CAS  Google Scholar 

  • Neubauer, U., Furrer, G., & Schulin, R. (2002). Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved Fe(III). European Journal of Soil Science, 53(1), 45–55.

    Article  CAS  Google Scholar 

  • Neumarnn, H., Bode-Kirchhoff, A., Madeheim, A., & Wetzel, A. (1998). Toxicity testing of heavy metals with the Rhizobium-Legume symbiosis: high sensitivity to cadmium and arsenic compounds. Environmental Science and Pollution Research, 5(1), 28–36.

    Article  Google Scholar 

  • Pereira, S. I. A., Lima, A. I. G., & Figueira, E. M. A. P. (2006). Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv. viciae isolated from contaminated Portuguese soils. Microbial Ecology, 52(2), 176–186.

    Article  CAS  Google Scholar 

  • Provorov, N. A., & Tikhonovich, I. A. (2003). Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genetic Resources and Crop Evolution, 50(1), 89–99.

    Article  CAS  Google Scholar 

  • Puschenreiter, M., Türkta, M., Sommer, P., Wieshammer, G., Laaha, G., Wenzel, W. W., & Hauser, M. T. (2010). Differentiation of metallicolous and non-metallicolous Salix caprea populations based on phenotypic characteristics and nuclear microsatellite (SSR) markers. Plant, Cell & Environment, 33(10), 1641–1655.

    Article  CAS  Google Scholar 

  • Reed, M. L., Warner, B. G., & Glick, B. R. (2005). Plant growth-promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Current Microbiology, 51(6), 425–429.

    Article  CAS  Google Scholar 

  • Safronova, V. I., Stepanok, V. V., Engqvist, G. L., Alekseyev, Y. V., & Belimov, A. A. (2006). Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils, 42(3), 267–272.

    Article  CAS  Google Scholar 

  • Safronova, V. I., Piluzza, G., Bullitta, S., & Belimov, A. A. (2011). Use of legume-microbe symbioses for phytoremediation of heavy metal polluted soils: advantages and potential problems. In I. A. Golubev (Ed.), Handbook of phytoremediation (pp. 443–469). New York: Nova Science Publishers, Inc.

    Google Scholar 

  • Safronova, V. I., Piluzza, G., Zinovkina, N. Y., Kimeklis, A. K., Belimov, A. A., & Bullitta, S. (2012). Relationships between pasture legumes, rhizobacteria an nodule bacteria in heavy metal polluted mine waste of SW Sardinia. Symbiosis, 58(1–3), 149–159.

    Article  Google Scholar 

  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34(10), 635–648.

    Article  CAS  Google Scholar 

  • Sell, J., Kayser, A., Schulin, R., & Brunner, I. (2005). Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant and Soil, 277(1–2), 245–253.

    Article  CAS  Google Scholar 

  • Seuntjens, P., Nowack, B., & Schulin, R. (2004). Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant and Soil, 265(1–2), 61–73.

    Article  CAS  Google Scholar 

  • Tikhonovich, I. A., & Provorov, N. A. (2009). From plant–microbe interactions to symbiogenetics: a universal paradigm for the interspecies genetic integration. Annals of Applied Biology, 154(3), 341–350.

    Article  Google Scholar 

  • Tsyganov, V. E., Belimov, A. A., Borisov, A. Y., Safronova, V. I., Georgi, M., Dietz, K.-J., & Tikhonovich, I. A. (2007). A chemically induced new pea (Pisum sativum L.) mutant SGECdt with increased tolerance to and accumulation of cadmium. Annals of Botany, 99(2), 227–237.

    Article  CAS  Google Scholar 

  • Wang, F. Y., Lin, X. G., & Yin, R. (2007). Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens—a field case. Environmental Pollution, 147(1), 248–255.

    Article  CAS  Google Scholar 

  • Wani, P. A., & Khan, M. S. (2013). Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bulletin of Environmental Contamination and Toxicology, 91(1), 117–124.

    Article  CAS  Google Scholar 

  • Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321(1–2), 385–408.

    Article  CAS  Google Scholar 

  • Wetzel, A., & Werner, D. (1995). Ecotoxicological evaluation of contaminated soil using the legume root nodule symbiosis as effect parameter. Environmental Toxicology and Water Quality, 10(2), 127–133.

    Article  CAS  Google Scholar 

  • Wu, C. H., Wood, T. K., Mulchandani, A., & Chen, W. (2006). Engineering of plant–microbe symbiosis for rhizoremediation of heavy metals. Applied and Environmental Microbiology, 72(2), 1129–1134.

    Article  CAS  Google Scholar 

  • Zaidi, S., Usmani, S., Singh, B. R., & Musarrat, J. (2006). Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 64(6), 991–997.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mrs. Demchinskaya S.V. for the assistance in the experiments with Indian mustard. The work on Indian mustard was supported by the Russian Foundation of Basic Research (06-04-49486-a and 09-04-01614-a). The work on pea, nodule bacteria and mathematical simulation of interactions between pea and AMF was supported by the Russian Science Foundation (14-16-00137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Belimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belimov, A.A., Puhalsky, I.V., Safronova, V.I. et al. Role of Plant Genotype and Soil Conditions in Symbiotic Plant-Microbe Interactions for Adaptation of Plants to Cadmium-Polluted Soils. Water Air Soil Pollut 226, 264 (2015). https://doi.org/10.1007/s11270-015-2537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2537-9

Keywords

Navigation