Skip to main content

Advertisement

Log in

Screening Possible Mechanisms Mediating Cadmium Resistance in Rhizobium leguminosarum bv. viciae Isolated from Contaminated Portuguese Soils

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Environment heavy-metal contamination is now widespread. Soils may become contaminated from a variety of anthropogenic sources, such as smelters, mining, industry, and application of metal-containing pesticides and fertilizers. Soil microorganisms are very sensitive to moderate heavy-metal concentrations. Therefore, the present work was designed to screen possible mechanisms involved in Rhizobium's Cd resistance; with this purpose, we determined the tolerance levels of several isolates originated from sites with different heavy-metal contamination. Whole-cell-soluble proteins and plasmid profiles were analyzed. We also determined Cd cell concentrations and lipopolysaccharide (LPS) amounts. Results showed different tolerances among Rhizobium isolates; according to their maximum resistance level, isolates were divided in four groups: sensitive (0–125 μM CdCl2), moderately tolerant (125–210 μM CdCl2), tolerant (250–500 μM CdCl2), and extremely tolerant (≥750 μM CdCl2). Intracellular Cd concentrations were lower when compared to wall-bound Cd. Unexpectedly, extremely tolerant isolates accumulated higher levels of metal, suggesting the presence of intracellular agents that prevent metal interfering with important metabolic pathways. The electrophoretic patterns of whole-cell-soluble proteins evidenced cadmium as an inducer of protein metabolism alterations, which were more evident in some polypeptides. Plasmid profiles also showed differences; most tolerant isolates presented two plasmids with molecular weights of 485 and 415 kb, indicating that extrachromosomal DNA may be involved in cadmium resistance. LPS showed to be a common mechanism of resistance. However, the degree of tolerance conferred by LPS is not enough to support tolerance to the higher levels of stress imposed. Presence of other resistance mechanisms is currently being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bååth, E (1992) Measurement of heavy metal tolerance of soil bacteria using thymidine incorporation into bacteria extracted after homogenization–centrifugation. Soil Biol Biochem 24: 1167–1172

    Article  Google Scholar 

  2. Bååth, E, Díaz-Ravina, M, Frostegård, Å, Campbell,CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64: 238–245

    PubMed  Google Scholar 

  3. Baldani, JI, Weaver, RW (1992) Survival of clover rhizobia and their plasmid-cured derivates in soil under heat and drought stress. Soil Biol Biochem 24: 737–742

    Article  Google Scholar 

  4. Beveridge, TJ, Murray, RGE (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 127: 1502–1518

    PubMed  CAS  Google Scholar 

  5. Beveridge, TJ, Murray, RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141: 876–887

    PubMed  CAS  Google Scholar 

  6. Blake, RC, Choate, DM, Bardhan, S, Revis, N, Barton, LL, Zocco, TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12: 1365–1376

    Article  CAS  Google Scholar 

  7. Bruins, MR, Kapil, S, Oehme, FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45: 198–207

    Article  PubMed  CAS  Google Scholar 

  8. Castro, IV, Ferreira, EM, McGrath, SP (2003) Survival and plasmid stability of rhizobia introduced into contaminated soil. Soil Biol Biochem 35: 49–54

    Article  CAS  Google Scholar 

  9. Commission of the European Communities (1986) Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off J Eur Communities L181. Annex 1A, 10

  10. Díaz-Raviña, M, Bååth, M, Frostegård, A (1994) Multiple heavy metal tolerance of soil bacterial communities and its measurement by thymidine incorporation technique. Appl Environ Microbiol 60: 2238–2247

    PubMed  Google Scholar 

  11. Doelman, P, Jansen, E, Michels, M, van Til, M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity–resistance index, an ecologically relevant parameter. Biol Fertil Soil 17: 177–184

    Article  CAS  Google Scholar 

  12. Figueira, E (2000) Aspectos da tolerância salina em Pisum sativum L.: influência da nutrição azotada. PhD Thesis. Universidade de Aveiro. Aveiro, Portugal

  13. Figueira, EMAP, Caldeira, GCN (2005) Effect of nitrogen nutrition on salt tolerance of Pisum sativum during vegetative growth. J Plant Nutr Soil Sci 168: 359–362

    Article  CAS  Google Scholar 

  14. Figueira, EMAP, Lima, AIG, Pereira, SIA (2005) Monitoring glutathione levels as a marker for cadmium stress in Rhizobium leguminosarum biovar viciae. Can J Microbiol 51: 7–14

    Article  PubMed  CAS  Google Scholar 

  15. Gadd, GM, Griffiths, AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4: 303–317

    Article  CAS  Google Scholar 

  16. Giller, KE, Witter, E, McGrath, SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agricultural soils: a review. Soil Biol Biochem 30: 1389–1414

    Article  CAS  Google Scholar 

  17. Hames, BD (1981) An introduction to polyacrylamide gel electrophoresis. In: Hames, BD, Rickwood, D (Eds.) Gel Electrophoresis of Proteins: A Practical Approach, IRL Press, Oxford, pp 1–91

    Google Scholar 

  18. Hynes, MF, McGregor, NF (1990) Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol Microbiol 4: 567–574

    Article  PubMed  CAS  Google Scholar 

  19. Hynes, MF, Simon, R, Pühler, A (1985) The development of plasmid-free strains of Agrobacterium tumefasciens by using incompatibility with Rhizobium meliloti plasmid to eliminate pAtC58. Plasmid 13: 99–105

    Article  PubMed  CAS  Google Scholar 

  20. Ji, G, Silver, S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14: 61–75

    Article  PubMed  CAS  Google Scholar 

  21. Khan, M, Scullion, J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil microorganisms and their activities. Appl Soil Ecol 20: 145–155

    Article  Google Scholar 

  22. Laemmli, UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  23. Langley, S, Beveridge, TJ (1999) Effect of O-side-chain–lipopolysaccharide chemistry on metal binding. Appl Environ Microbiol 65: 489–498

    PubMed  CAS  Google Scholar 

  24. Lakzian, A, Murphy, P, Turner, A, Beynon, JL, Giller, KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34: 519–529

    Article  CAS  Google Scholar 

  25. Lawlor, K, Chaudri, AM, McGrath, SP, Hirsch, PR (1999) Gene transfer in bacteria from soils contaminated with heavy metals. Lett Appl Microbiol 28: 317–320

    Article  CAS  Google Scholar 

  26. Malik, A (2004) Metal bioremediation through growing cells. Environ Int 30: 261–278

    Article  PubMed  CAS  Google Scholar 

  27. McGrath, SP, Brookes, PC, Giller, KE (1988) Effects of potential toxic metals in soil derived from past applications of sewage sludge on nitrogen fixation by Trifolium repens L. Soil Biol Biochem 20: 415–424

    Article  CAS  Google Scholar 

  28. McGrath, SP, Chaudri, AM, Giller, KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14: 94–104

    Article  PubMed  CAS  Google Scholar 

  29. Mullen, MD, Wolf, DC, Ferris, FG, Beveridge, TJ, Flemming, CA, Bailey, GW (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55: 3143–3149

    PubMed  CAS  Google Scholar 

  30. Nies, DH (1992) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27: 17–28

    Article  PubMed  CAS  Google Scholar 

  31. Nies, DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51: 730–750

    Article  PubMed  CAS  Google Scholar 

  32. Nies, DH, Silver, S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14: 189–199

    Article  Google Scholar 

  33. Purchase, D, Miles, RJ (2001) Survival and nodulating ability of indigenous and inoculated Rhizobium leguminosarum biovar trifolii in sterilized and unsterilized soil treated with sewage sludge. Curr Microbiol 42: 59–64

    Article  PubMed  CAS  Google Scholar 

  34. Purchase, D, Miles, RJ, Young, TWK (1997) Cadmium uptake and nitrogen fixing ability in heavy-metal-resistant laboratory and field strains of Rhizobium leguminosarum biovar trifolii. FEMS Microbiol Ecol 22: 85–93

    Article  CAS  Google Scholar 

  35. Saxena, D, Amin, M, Khanna, S (1996) Modulation of protein profiles in Rhizobium sp. under salt stress. Can J Microbiol 42: 617–620

    Article  CAS  Google Scholar 

  36. Scott, JA, Palmer, SJ (1990) Sites of cadmium uptake in bacteria used for biosorption. Appl Environ Microbiol 33: 221–225

    CAS  Google Scholar 

  37. Shi, W, Bischoff, M, Turco, R, Konopka, A (2002) Long-term effects of chromium and lead upon the activity of soil microbial communities. Appl Soil Ecol 21: 169–177

    Article  Google Scholar 

  38. Silver, S, Ji, G (1994) Newer systems for bacterial resistance's to toxic heavy metals. Environ Health Perspect 102: 107–113

    Article  PubMed  CAS  Google Scholar 

  39. Silver, S, Misra, TK (1988) Plasmid-mediated heavy metal resistances. Annu Rev Microbiol 42: 717–743

    Article  PubMed  CAS  Google Scholar 

  40. Silver, S, Phung, LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50: 753–789

    Article  PubMed  CAS  Google Scholar 

  41. Somasegaran, P, Hoben, HJ (1994) Handbook for Rhizobia, Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  42. Sutherland, IW (1985) Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol 39: 243–270

    Article  PubMed  CAS  Google Scholar 

  43. Tsai, CM, Frash, CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119: 115–119

    Article  PubMed  CAS  Google Scholar 

  44. Unni, S, Rao, KK (2001) Protein and lipopolysaccharide profiles of salt-sensitive Rhizobium sp. and its exopolysaccharide-deficient mutant. Soil Biol Biochem 33: 111–115

    Article  CAS  Google Scholar 

  45. Valverde, C, Hozbor, DF, Lagares, A (1997) Rapid preparation of affinity-purified lipopolysaccharide samples for electrophoretic analysis. BioTechniques 22: 230–236

    PubMed  CAS  Google Scholar 

  46. Völker, U, Mach, H, Schmid, R, Hecher, M (1992) Stress protein and cross-protection by heat shock and salt stress in Bacillus subtilis. J Gen Microbiol 138: 2125–2135

    PubMed  Google Scholar 

  47. Weaver, RW, Holt, EC (1990) Short-term survival of rhizobia on arrow leaf clover seed at different depths. Plant Soil 122: 147–150

    Article  Google Scholar 

  48. Yeo, A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49: 915–929

    Article  CAS  Google Scholar 

  49. Zahran, HH, Räsänen, LA, Karsisto, M, Lindström, K (1994) Alteration of lipopolysaccharide and protein profiles in SDS-PAGE of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10: 100–105

    Article  CAS  Google Scholar 

  50. Zhang, X, Kosier, B, Priefer, UB (2001) Symbiotic plasmid rearrangement in Rhizobium leguminosarum bv. viciae VF39SM. J Bacteriol 183: 2141–2144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Robert Grace for his revision of the English language. This work was supported by a grant from the Centre for Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Isabel Almeida Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, S.I.A., Lima, A.I.G. & Figueira, E.M.d.A.P. Screening Possible Mechanisms Mediating Cadmium Resistance in Rhizobium leguminosarum bv. viciae Isolated from Contaminated Portuguese Soils. Microb Ecol 52, 176–186 (2006). https://doi.org/10.1007/s00248-006-9057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9057-5

Keywords

Navigation