Skip to main content

Advertisement

Log in

Kinetics of Oxidative Steam Reforming of Ethanol Over Bimetallic Catalysts Supported on CeO2–SiO2: A Comparative Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic activity of M(Ag, Ru, Pt)–Ni/CeO2–SiO2 catalysts prepared by wet impregnation at different M loadings (0–3 wt%) for oxidative steam reforming of ethanol (OSR) was investigated at H2O/C2H5OH = 4, O2/C2H5OH = 0.5, T = 300–600 °C and WHSV = 61.7 h−1. Ag deposition on the Ni/CeO2–SiO2 sample resulted in lower H2 yields, whatever the silver content. Conversely, Ru and Pt addition improved the performances of the monometallic sample and catalyst activity was enhanced by the reduction of metals loading. Similar results were recorded over the catalysts prepared at the same metals content and a metal loading of 0.5 wt% was sufficient to reach the highest performance in the investigated temperature interval. The kinetic model able to predict the experimental results obtained over the most promising formulations includes ethanol decomposition, methane oxidation and steam reforming, water gas shift; Pt as well as Ru addition to the Ni/CeO2–SiO2 sample reduced the activation energy of the involved reactions and Ru was demonstrated to be a valid substitute of the Pt for OSR of ethanol. Thus, by employing smaller noble metal content and less expensive materials, it is possible to reduce the catalyst price.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baykara SZ (2018) Hydrogen: a brief overview on its sources, production and environmental impact. Int J Hydrog Energy 43:10605–10614

    Article  CAS  Google Scholar 

  2. Guandalini G, Campanari S, Valenti G (2016) Comparative assessment and safety issues in state-of-the-art hydrogen production technologies. Int J Hydrog Energy 41:18901–18920

    Article  CAS  Google Scholar 

  3. Akdim O, Cai W, Fierro V, Provendier H, van Veen A et al (2008) Oxidative steam reforming of ethanol over Ni–Cu/SiO2, Rh/Al2O3 and Ir/CeO2: effect of metal and support on reaction mechanism. Top Catal 51:22

    Article  CAS  Google Scholar 

  4. Lee M, Cho S, Kim J (2017) A comprehensive model for design and analysis of bioethanol production and supply strategies from lignocellulosic biomass. Renew Energy 112:247–259

    Article  Google Scholar 

  5. Fatsikostas AN, Kondarides DI, Verykios XE (2002) Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catal Today 75:145–155

    Article  CAS  Google Scholar 

  6. Mas V, Bergamini ML, Baronetti G, Amadeo N, Laborde M (2008) A Kinetic study of ethanol steam reforming using a Nickel based catalyst. Top Catal 51:39

    Article  CAS  Google Scholar 

  7. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  8. Gac W, Greluk M, Słowik G, Turczyniak-Surdacka S (2018) Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction. Appl Surf Sci 440:1047–1062

    Article  CAS  Google Scholar 

  9. da Silva FA, Dancini-Pontes I, DeSouza M, Fernandes NRC (2017) Kinetics of ethanol steam reforming over Cu–Ni/NbxOy catalyst. React Kinet Mech Cat 122:557–574

    Article  CAS  Google Scholar 

  10. Fajardo HV, Probst LFD, Carreño NLV, Garcia ITS, Valentini A (2007) Hydrogen production from ethanol steam reforming over Ni/CeO2 nanocomposite catalysts. Catal Lett 119:228–236

    Article  CAS  Google Scholar 

  11. Montero C, Remiro A, Benito PL, Bilbao J, Gayubo AG (2018) Optimum operating conditions in ethanol steam reforming over a Ni/La2O3-αAl2O3 catalyst in a fluidized bed reactor. Fuel Process Technol 169:207–216

    Article  CAS  Google Scholar 

  12. Palma V, Ruocco C, Meloni E, Ricca A (2017) Highly active and stable Pt-Ni/CeO2-SiO2 catalysts for ethanol reforming. J Clean Prod 166:263–272

    Article  CAS  Google Scholar 

  13. de Lima SM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. J Catal 257:356–368

    Article  CAS  Google Scholar 

  14. Velu S, Satoh N, Gopinath CS, Suzuki K (2002) Oxidative reforming of bio-ethanol over CuNiZnAl mixed oxide catalysts for hydrogen production. Catal Lett 82:145–152

    Article  CAS  Google Scholar 

  15. Quitete CPB, Tavares RPA, Bittencourt RCP, Souza MMVM (2016) Coking Study of nickel catalysts using model compounds. Catal Lett 146:1435–1444

    Article  CAS  Google Scholar 

  16. Xiancai L, Shuigen L, Yifeng Y, Min W, Fei H (2007) Studies on coke formation and coke species of nickel-based catalysts in CO2 reforming of CH4. Catal Lett 118:59–63

    Article  CAS  Google Scholar 

  17. Dolgykh LY, Stolyarchuk IL, Staraya LA, Vasylenko IV, Pyatnitsky YI (2014) Catalytic properties of MnO, Fe2O3, and MnFe2O4 in the steam reforming of ethanol. Theor Exp Chem 50:245–249

    Article  CAS  Google Scholar 

  18. Roh H-S, Wang Y, King DL, Platon A, Chin Y-H (2006) Low temperature and H2 selective catalysts for ethanol steam reforming. Catal Lett 108:15–19

    Article  CAS  Google Scholar 

  19. Sekine Y, Kazama A, Izutsu Y, Matsukata M, Kikuchi E (2009) Steam reforming of ethanol over cobalt catalyst modified with small amount of iron. Catal Lett 132:329

    Article  CAS  Google Scholar 

  20. Barroso MN, Gómez MF, Arrúa LA, Abello MC (2009) Steam reforming of ethanol over a NiZnAl catalyst. Influence of pre-reduction treatment with H2. React Kinet Catal Lett 97:27–33

    Article  CAS  Google Scholar 

  21. Youn MH, Seo JG, Jung JC, Chung JS, Song IK (2010) Support modification of supported nickel catalysts for hydrogen production by auto-thermal reforming of ethanol. Catal Surv Asia 14:55–63

    Article  CAS  Google Scholar 

  22. Dömök M, Baán K, Kecskés T, Erdőhelyi A (2008) Promoting mechanism of potassium in the reforming of ethanol on Pt/Al2O3 catalyst. Catal Lett 126:49–57

    Article  CAS  Google Scholar 

  23. Gong Z, Laura B, Stefano A, Senanayake DS, Jaime E et al (2010) High Activity of Ce1 − xNixO2 − y for H2 Production through Ethanol Steam Reforming: tuning Catalytic Performance through Metal-Oxide Interactions. Angew Chwm Int Edit 49:9680–9684

    Article  CAS  Google Scholar 

  24. Song H, Zhang L, Ozkan US (2012) The effect of surface acidic and basic properties on the performance of cobalt-based catalysts for ethanol steam reforming. Top Catal 55:1324–1331

    Article  CAS  Google Scholar 

  25. Palma V, Ruocco C, Meloni E, Ricca A (2017) Oxidative steam reforming of ethanol on mesoporous silica supported PtNi/CeO2 catalysts. Int J Hydrog Energy 42:1598–1608

    Article  CAS  Google Scholar 

  26. Kugai J, Velu S, Song C (2005) Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production. Catal Lett 101:255–264

    Article  CAS  Google Scholar 

  27. Sanchez-Sanchez MC, Navarro RM, Espartero I, Ismail AA, Al-Sayari SA, Fierro JLG (2013) Role of Pt in the activity and stability of PtNi/CeO2–Al2O3 catalysts in ethanol steam reforming for H2 production. Top Catal 56:1672–1685

    Article  CAS  Google Scholar 

  28. Espinal R, Taboada E, Molins E, Chimentao RJ, Medina F, Llorca J (2013) Ethanol steam reforming over hydrotalcite-derived Co catalysts doped with Pt and Rh. Top Catal 56:1660–1671

    Article  CAS  Google Scholar 

  29. Palma V, Ruocco C, Meloni E, Gallucci F, Ricca A (2018) Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica. Catal Today 307:175–188

    Article  CAS  Google Scholar 

  30. Hou T, Zhang S, Chen Y, Wang D, Cai W (2015) Hydrogen production from ethanol reforming: catalysts and reaction mechanism. Renew Sust Energ Rev 44:132–148

    Article  CAS  Google Scholar 

  31. Ramos IAC, Montini T, Lorenzut B, Troiani H, Gennari FC et al (2012) Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M = Ru, Pd, Ag) nanocomposites. Catal Today 180:96–104

    Article  CAS  Google Scholar 

  32. Castaldo F, Palma V, Ruocco C, Ciambelli P, Iaquaniello G (2015) Low temperature-ethanol steam reforming over Ni-based catalysts supported on CeO2. J Power Tech 95:54–66

    Google Scholar 

  33. Ciambelli P, Palma V, Palo E, Iaquaniello G, Mangiapane A, Cavallero P (2007) Energy sustainable development through methane autothermal reforming for hydrogen production. Proc AIDIC Conf Ser 8:67–76

    Google Scholar 

  34. Davidson S, Sun J, Wang Y (2013) Ethanol steam reforming on Co/CeO2: the effect of ZnO promoter. Top Catal 56:1651–1659

    Article  CAS  Google Scholar 

  35. Iriondo A, Barrio VL, Cambra JF, Arias PL, Güemez MB et al (2008) Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Top Catal 49:46

    Article  CAS  Google Scholar 

  36. Palma V, Ruocco C, Meloni E, Ricca A (2017) Renewable hydrogen from ethanol reforming over CeO2–SiO2 based catalysts. Catalysts 7:226

    Article  CAS  Google Scholar 

  37. Ramachandran A, Chakrabarty DK (1988) Silica supported rhodium-ruthenium bimetallic catalysts in carbon monoxide hydrogenation: I. Influence of the method of preparation and methanation behaviour. Appl Catal 42:229–237

    Article  CAS  Google Scholar 

  38. Smoláková L, Kout M, Čapek L (2015) The role of Ni species distribution on the effect of Ce as a promoter in C2-ODH reaction. Top Catal 58:843–853

    Article  CAS  Google Scholar 

  39. Yu Y, Bian Z, Song F, Wang J, Zhong Q, Kawi S (2018) Influence of calcination temperature on activity and selectivity of Ni–CeO2 and Ni–Ce0.8Zr0.2O2 catalysts for CO2 methanation. Top Catal 61:1514–1527

    Article  CAS  Google Scholar 

  40. de Castro TP, Peguin RPS, Neto RCR, Borges LEP, Noronha FB (2016) Steam reforming of toluene over Pt/CexZr1 − xO2/Al2O3 catalysts. Top Catal 59:292–302

    Article  CAS  Google Scholar 

  41. Zangouei M, Moghaddam AZ, Arasteh M (2010) The influence of nickel loading on reducibility of NiO/Al 2 O 3 catalysts synthesized by sol-gel method. Chem Eng Res Bull 14:6

    Article  CAS  Google Scholar 

  42. Hohmeyer J, Kondratenko EV, Bron M, Kröhnert J, Jentoft FC et al (2010) Activation of dihydrogen on supported and unsupported silver catalysts. J Catal 269:5–14

    Article  CAS  Google Scholar 

  43. González-Marcos MP, Pereda B, De La Torre U, González-Velasco JR (2013) On the effect of reduction and ageing on the TWC activity of Pt/Ce0.68Zr0.32O2 under simulated automotive exhausts. Top Catal 56:352–357

    Article  CAS  Google Scholar 

  44. Tungatarova SA, Dossumov K, Baizhumanova TS (2010) Production of synthesis-gas on low-percentage Pt-, Ru- and Pt–Ru catalysts. Top Catal 53:1285–1288

    Article  CAS  Google Scholar 

  45. Crisafulli C, Scirè S, Maggiore R, Minicò S, Galvagno S (1999) CO2 reforming of methane over Ni–Ru and Ni–Pd bimetallic catalysts. Catal Lett 59:21–26

    Article  CAS  Google Scholar 

  46. Karakaya M, Ilsen Onsan Z, Avci AK (2013) Microchannel autothermal reforming of methane to synthesis gas. Top Catal 56:1716–1723

    Article  CAS  Google Scholar 

  47. Yentekakis IV, Goula G, Panagiotopoulou P, Katsoni A, Diamadopoulos E et al (2015) Dry reforming of methane: catalytic performance and stability of Ir catalysts supported on γ-Al2O3, Zr0.92Y0.08O2 − δ (YSZ) or Ce0.9Gd0.1O2 − δ (GDC) supports. Top Catal 58:1228–1241

    Article  CAS  Google Scholar 

  48. Lu H, Rihko-Struckmann L, Hanke-Rauschenbach R, Sundmacher K (2008) Dynamic behavior of a PEM fuel cell during electrochemical CO oxidation on a PtRu anode. Top Catal 51:89–97

    Article  CAS  Google Scholar 

  49. Ruocco C, Palma V, Ricca A (2018) Experimental and kinetic study of oxidative steam reforming of ethanol over fresh and spent bimetallic catalysts. Chem Eng J. https://doi.org/10.1016/j.cej.2018.08.164

    Article  Google Scholar 

  50. Santos ACSF, Damyanova S, Teixeira GNR, Mattos LV, Noronha FB et al (2005) The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane. Appl Catal A 290:123–132

    Article  CAS  Google Scholar 

  51. Ciambelli P, Palma V, Ruggiero A (2010) Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts. Appl Catal B 96:190–197

    Article  CAS  Google Scholar 

  52. Xu J, Froment GF (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35:88–96

    Article  CAS  Google Scholar 

  53. Palma V, Ruocco C, Ricca A (2018) Renewable H2 production via oxidative reforming on Ni catalysts: an experimental and kinetic study. Chem Eng Trans 70:1321–1326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta Ruocco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruocco, C., Palma, V. & Ricca, A. Kinetics of Oxidative Steam Reforming of Ethanol Over Bimetallic Catalysts Supported on CeO2–SiO2: A Comparative Study. Top Catal 62, 467–478 (2019). https://doi.org/10.1007/s11244-019-01173-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01173-2

Keywords

Navigation