Skip to main content

Advertisement

Log in

A Kinetic Study of Ethanol Steam Reforming Using a Nickel Based Catalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A kinetic study of ethanol steam reforming to produce hydrogen within the region of kinetic rate control was carried out. A Ni(II)–Al(III) lamellar double hydroxide as catalyst precursor was used. H2, CO, CO2 and CH4 were obtained as products. Using the Langmuir–Hinshelwood (L–H) approach, two kinetic models were proposed. The first was a general model including four reactions, two of them corresponding to ethanol steam reforming and the other two to methane steam reforming. When high temperatures and/or high water/ethanol feed ratios were used, the system could be reduced to two irreversible ethanol steam reforming reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ct :

Total concentration of active sites

Ea :

Activation energy (KJ/mol)

K:

Equilibrium constant

K*:

Equilibrium constant of surface reaction

KE :

Adsorption equilibrium constant of ethanol

KM :

Adsorption equilibrium constant of methane

KW :

Adsorption equilibrium constant of water

k:

Kinetic coefficient

k*:

k/Ct

n :

Number of experiments

P:

Partial pressure

r:

Reaction rate

y:

Molar fraction

\( y_{i,s}^{\exp } \) :

Molar fraction of i measured in experiment s

\( \hat{y}_{i}^{\exp } \) :

Average of y i,s exp

y i,s :

Molar fraction of i predicted with the model

ΔH:

Adsorption enthalpy

\( \theta \) :

Space time

References

  1. Klouz V, Fierro V, Denton P, Katz H, Lisse JP, Bouvot Mauduit S, Mirodatos C (2001) J Power Sources 4549:1

    Google Scholar 

  2. Brown LF (2001) Int J Hydrogen Energy 26:381

    Article  CAS  Google Scholar 

  3. Mariño FJ, Boveri M, Baronetti G, Laborde M (7/2001) Int J Hydrogen Energy 26:665

  4. Auprêtre F, Descorme C, Duprez D (2002) Catal Commun 3:263

    Article  Google Scholar 

  5. Comas J, Mariño F, Laborde M, Amadeo N (2004) Chem Eng J 98:61

    Article  CAS  Google Scholar 

  6. Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  7. Garcia EY, Laborde MA (1991) Int J Hydrogen Energy 16:307

    Article  CAS  Google Scholar 

  8. Mas V, Kipreos R, Amadeo N, Laborde M (2006) Int J Hydrogen Energy 31:21

    Article  CAS  Google Scholar 

  9. Llorca J, Homes N, Sales J, Ramírez de la Piscina P (2002) J Catal 209:306

    Article  CAS  Google Scholar 

  10. Llorca J, Ramírez de la Piscina P, Delmon JA, Sales J, Homes N (2003) Appl Catal 43:355

    Article  CAS  Google Scholar 

  11. Cavallaro S, Chiodo V, Freni S, Mondillo N, Frusteri F (2003) Appl Catal 249:119

    Article  CAS  Google Scholar 

  12. Liguras DK, Kondarides DI, Verykios XE (2001) Appl Catal B Environ 43:345

    Article  CAS  Google Scholar 

  13. Zhang B, Tang X, Li Y, Cai W, Xu Y, Shen W (2006) Catal Commun 7:367

    Article  CAS  Google Scholar 

  14. Vaidya PD, Rodrigues A (2006) Ind Eng Chem Res 45:6614

    Article  CAS  Google Scholar 

  15. Morgensen DA, Fornango JP (2005) Energ Fuel 19:1708

    Article  CAS  Google Scholar 

  16. Sun J, Qiu X-P, Wu F, Zhu W-T (2005) Int J Hydrogen Energy 30:437

    Article  CAS  Google Scholar 

  17. Akande A, Aboudheir A, Idem R, Delai A (2006) Int J Hydrogen Energy 31:1707

    Article  CAS  Google Scholar 

  18. Sahoo DR, Vajpai S, Patel S, Pant KK (2007) Chem Eng J 125:139

    Article  CAS  Google Scholar 

  19. Akpan E, Akande A, Aboudheir A, Ibrahim H, Idem R (2007) Chem Eng Sci 62:3112

    Article  CAS  Google Scholar 

  20. Mas V, Baronetti G, Amadeo N, Laborde M (2008) Chem Eng J 138:602

    Article  CAS  Google Scholar 

  21. Brindley GW, Kikkawa S (1979) Am Mineral 64:836

    CAS  Google Scholar 

  22. Mas V, Dieuzeide ML, Jobbágy M, Baronetti G, Amadeo N, Laborde M (2008) Catal Today 133–135:319

    Article  CAS  Google Scholar 

  23. Froment GF, Bishoff KB (1990) Chemical reactor analysis and design. Wiley, New York

    Google Scholar 

  24. Elnashaie SSEH, Elshishini SS (1993) Modelling, simulation and optimization of industrial fixed bed reactor. Gordon and Breach Science, New York, ch. 3

  25. Xu J, Froment GF (1989) AIChE J 35:88

    Article  CAS  Google Scholar 

  26. Rostrup-Nielsen JR (1984) Catalytic steam reforming. Springer, Berlin

    Google Scholar 

  27. Brooke A, Kendrick D, Meeraus A, Raman R (1998) GAMS. A user’s guide. GAMS Development Corporation

  28. Drud AS (1996) CONOPT: a system for large scale nonlinear optimization, reference manual for CONOPT subroutine library. ARKI Consulting and Development A/S, Bagsvaerd, Denmark

  29. Hou K, Hughes R (2001) Chem Eng J 82:311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To Universidad de Buenos Aires, CONICET, ANPCYT and CYTED for the financial support. The authors acknowledge the help of Mr. Roberto Tejeda in the experimental measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laborde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mas, V., Bergamini, M.L., Baronetti, G. et al. A Kinetic Study of Ethanol Steam Reforming Using a Nickel Based Catalyst. Top Catal 51, 39–48 (2008). https://doi.org/10.1007/s11244-008-9123-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9123-y

Keywords

Navigation