Skip to main content

Advertisement

Log in

Role of Pt in the Activity and Stability of PtNi/CeO2–Al2O3 Catalysts in Ethanol Steam Reforming for H2 Production

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydrogen production from ethanol reforming was investigated on bimetallic PtNi catalysts supported on CeO2/Al2O3. Pt content was varied from 0.5 to 2.5 %. Physico-chemical characterization of the as-prepared and H2-reduced catalysts by TPR, XRD and XPS showed that Pt phase interacted with the Ni and Ce species present at the surface of the catalysts. This interaction leads to an enhancement of the reducibility of both Ni and Ce species. Loadings of Pt higher than 1.0 wt% improved the activity and stability of the Ni/CeO2–Al2O3 catalyst in ethanol steam reforming, in terms of lower formation of coke, C2 secondary products and a constant production of CO2 and H2. The amount and type of carbon deposited on the catalyst was analyzed by TG–TPO while the changes in crystalline phases after reaction were studied by XRD. It was found that for Pt contents higher than 1 wt% in the catalysts, a better contact between Pt and Ce species is achieved. This Pt–Ce interaction facilitates the dispersion of small particles of Pt and thereby improves the reducibility of both Ce and Ni components at low temperatures. In this type of catalysts, the cooperative effect between Pt0, Ni0 and reduced Ce phases leads to an improvement in the stability of the catalysts: Ni provides activity in C–C bond breakage, Pt particles enhance the hydrogenation of coke precursors (CxHy) formed in the reaction, and Ce increases the availability of oxygen at the surface and thereby further enhances the gasification of carbon precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fatsikostas AN, Kondarides DI, Verykios XE (2002) Catal Today 75:145

    Article  CAS  Google Scholar 

  2. Freni S, Cavallaro S, Mondello N, Spadaro L, Frusteri F (2002) J Power Sources 108:53

    Article  CAS  Google Scholar 

  3. Haga F, Nakajima T, Miya H, Mishima S (1997) Catal Lett 48:223

    Article  CAS  Google Scholar 

  4. Llorca J, Homs N, Sales J, de la Piscina PR (2002) J Catal 209:306

    Article  CAS  Google Scholar 

  5. Fierro V, Klouz V, Akdim O, Mirodatos C (2002) Catal Today 75:141

    Article  CAS  Google Scholar 

  6. Marino F, Boveri M, Baronetti G, Laborde M (2001) Int J Hydrogen Energy 26:665

    Article  CAS  Google Scholar 

  7. Liguras DK, Kondarides DI, Verykios XE (2003) Appl Catal B 43:345

    Article  CAS  Google Scholar 

  8. Fierro V, Akdim O, Provendier H, Mirodatos C (2005) J Power Sources 145:659

    Article  CAS  Google Scholar 

  9. Breen JP, Burch R, Coleman HM (2002) Appl Catal B 39:65

    Article  CAS  Google Scholar 

  10. Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  11. Zhang JC, Wang YH, Ma RY, Wu DY (2003) Appl Catal A Gen 243:251

    Article  CAS  Google Scholar 

  12. Choudhary VR, Prabhakar B, Rajput AM (1995) J Catal 157:752

    Article  CAS  Google Scholar 

  13. Parizotto NV, Rocha KO, Damyanova S, Passos FB, Zanchet D, Marques CMP, Bueno JMC (2007) App CatAL A Gen 330:12

    Article  CAS  Google Scholar 

  14. Kugai J, Velu S, Song CS (2005) Catal Lett 101:255

    Article  CAS  Google Scholar 

  15. Profeti LPR, Ticianelli EA, Assaf EM (2009) Int J Hydrogen Energy 34:5049

    Article  CAS  Google Scholar 

  16. Sanchez–Sanchez MC, Navarro RM, Kondarides DI, Verykios XE, Fierro JLG (2010) J Phys Chem A 113:3873

    Article  Google Scholar 

  17. Srinivas CVV, Satyanarayana CVV, Potdar HS, Ratnasamy P (2003) Appl Catal A Gen 24:323

    Article  Google Scholar 

  18. Fatsikostas AN, Kondarides DI, Verykios XE (2001) Chem Commun 9:851

    Article  Google Scholar 

  19. Srisiriwat N, Therdthianwong S, Therdthianwong A (2009) Int J Hydrogen Energy 34:2224

    Article  CAS  Google Scholar 

  20. Zhang B, Tang X, Li Y, Cai W, Xu Y, Shen W (2006) Catal Commun 7:367

    Article  CAS  Google Scholar 

  21. Alvarez-Galvan MC, Navarro RM, Rosa F, Briceno Y, Ridao MA, Fierro JLG (2008) Fuel 87:2502

    Article  CAS  Google Scholar 

  22. Diagne C, Idriss H, Pearson K, Gomez-Garcıa MA, Kiennemann A (2004) C R Chim 7:617

    Article  CAS  Google Scholar 

  23. Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B Environ 15:107

    Article  CAS  Google Scholar 

  24. Damyanova S, Perez CA, Schmal M, Bueno JMC (2003) Appl Catal A Gen 234:271

    Article  Google Scholar 

  25. Trovarelli A (1996) Catal Rev Sci Eng 38:439

    Article  CAS  Google Scholar 

  26. Zielinski J (1982) J Catal 76:157

    Article  CAS  Google Scholar 

  27. Rynkowski JM, Paryjczak T, Lenik M (1993) Appl Catal A Gen 106:73

    Article  CAS  Google Scholar 

  28. Ichikuni N, Murata D, Shimazu S, Uematsu T (2000) Catal Lett 69:33

    Article  Google Scholar 

  29. Richardson JT, Twigg MV (1998) Appl Catal A Gen 167:57

    Article  CAS  Google Scholar 

  30. Wang Y, Zhu A, Zhang Y, Au CT, Yang X, Shi C (2008) Appl Catal B Environ 81:141

    Article  CAS  Google Scholar 

  31. Sanchez–Sanchez MC (2008) PhD Thesis, Universidad Autonoma de Madrid

  32. Irusta S, Cornaglia LM, Lombardo EA (2004) Mater Chem Phys 86:440

    Article  CAS  Google Scholar 

  33. Sheng PY, Bowmaker GA, Idriss H (2004) Appl Catal A Gen 261:171

    Article  CAS  Google Scholar 

  34. Shyu JZ, Weber WH, Gandhi HS (1988) J Phys Chem 92:4964

    Article  CAS  Google Scholar 

  35. Rynkowski JM, Paryjczak T, Lenik M, Farbotko M, Goralski J (1995) J Chem Soc, Faraday Trans 91:3481

    Article  CAS  Google Scholar 

  36. Yao CH, Yao YF (1984) J Catal 86:254

    Article  CAS  Google Scholar 

  37. Serre C, Garin F, Belot G, Maire G (1993) J Catal 141:1

    Article  CAS  Google Scholar 

  38. Devred F, Gieske AH, Adkins N, Dahlborg U, Bao CM, Calvo-Dahlborg M, Bakker JW, Nieuwenhuys BE (2009) Appl Catal A Gen 356:154

    Article  CAS  Google Scholar 

  39. Damyanova S, Perez CA, Schmal M, Bueno JMC (2002) Appl Catal A Gen 234:271

    Article  CAS  Google Scholar 

  40. Corro G, Fierro JLG, Odillon VC (2003) Catal Commun 4:371

    Article  CAS  Google Scholar 

  41. Ivanova AS, Slavinskaya SM, Gulyaev RV, Zaikovskii VI, Stonkus OA, Danilova IG, Plyasova LM, Polukhina IA, Boronin AI (2010) Appl Catal B Environ 97:57

    Article  CAS  Google Scholar 

  42. Huizinga T, Vangrondelle J, Prins R (1984) Appl Catal 10:199

    Article  CAS  Google Scholar 

  43. Salagre P, Fierro JLG, Medina F, Sueiras JE (1996) J Mol Catal A: Chem 106:125

    Article  CAS  Google Scholar 

  44. NIST (2002) X-ray Photoelectron Spectroscopy Database: Version 3.4. National Institute of Standards and Technology, Gaithersburg. http://srdata.nist.gov/xp

  45. Fujimori A (1985) J Magn Magn Mater 47:243

    Article  Google Scholar 

  46. Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RH, Gale LH (1981) Surf Interface Anal 3:211

    Article  CAS  Google Scholar 

  47. Burroughs P, Hamnet A, Orchard AF, Thornton G (1976) J Chem Soc, Dalton Trans 17:1686

    Article  Google Scholar 

  48. Paparazzo E (2011) Mater Res Bull 46:323

    Article  CAS  Google Scholar 

  49. Wang SW, Lu GQ (1998) Appl Catal B Environ 19:267

    Article  Google Scholar 

  50. Perrichon V, Retailleau L, Bazin P, Daturi M, Lavalley JC (2004) Appl Catal A Gen 260:1

    Article  CAS  Google Scholar 

  51. Sánchez-Sánchez MC, Navarro RM, Fierro JLG (2007) Int J of Hydrogen Energy 32:1462

    Article  Google Scholar 

  52. Huang YJ, Schwarz JA, Diehl JR, Baltrus JP (1988) Appl Catal 37:229

    Article  CAS  Google Scholar 

  53. Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR (1998) J Catal 178:499

    Article  Google Scholar 

  54. Bartholomew CH (2001) Appl Catal A Gen 212:17

    Article  CAS  Google Scholar 

  55. Wang SB, Lu GQ (1998) Energy Fuels 12:248

    Article  CAS  Google Scholar 

  56. Kroll VCH, Swaan HM, Lacombe S, Mirodatos C (1996) J Catal 164:387

    Article  CAS  Google Scholar 

  57. Luo JZ, Yu ZL, Ng CF, Au CT (2000) J Catal 194:198

    Article  CAS  Google Scholar 

  58. Tsipouriari VA, Verykios XE (1998) J Catal 179:292

    Article  CAS  Google Scholar 

  59. Seok SH, Han SH, Lee JS (2001) Appl Catal A Gen 215:31

    Article  CAS  Google Scholar 

  60. Levy RB, Boudart M (1974) J Catal 32:304

    Article  CAS  Google Scholar 

  61. Zheng W, Zhang J, Ge Q, Xu H, Li W (2008) Appl Catal B Environ 80:98

    Article  CAS  Google Scholar 

  62. Fathi M, Bjorgum E, Viig T, Rokstad OA (2000) Catal Today 63:489

    Article  CAS  Google Scholar 

  63. Bengaard RHS, Nrskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Science and Innovation (Spain) and the Autonomous Government of Madrid, Madrid (Spain) under grants ENE2010-21198-C04-01 and S2009ENE-1743, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Sanchez-Sanchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Sanchez, M.C., Navarro, R.M., Espartero, I. et al. Role of Pt in the Activity and Stability of PtNi/CeO2–Al2O3 Catalysts in Ethanol Steam Reforming for H2 Production. Top Catal 56, 1672–1685 (2013). https://doi.org/10.1007/s11244-013-0101-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0101-7

Keywords

Navigation