Skip to main content
Log in

Micropropagation, estimation of DNA methylation during multiplication cycles and mycorrhization of seed-derived Dendrocalamus asper (Schultes f.) Backer ex Heyne

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Considering the economic significance of Dendrocalamus asper, a woody bamboo species, the objective of this study was to establish an in vitro micropropagation and mycorrhization protocol, and to analyze the DNA methylation dynamics during the multiplication stage of plants of this species. For shoot proliferation, meta-topolin (mT), 6-benzylaminopurine (BAP) and kinetin (Kin) were evaluated at different concentrations (0, 3.3, 6.6 and 13.3 µM) during three monthly subcultures. For in vitro mycorrhization, Rhizoglomus clarum inoculated in liquid medium was used. Murashige and Skoog (MS) and Strullu and Romand (MSR) culture media were tested with different modifications, such as reduced phosphorus, sucrose, and salts. The evidence of root colonization (spores, hyphae, or vesicles) was assessed. For micropropagation, it was verified that mT was as efficient as BAP for the in vitro multiplication of D. asper shoots. There was also a substantial reduction in the number of shoots in the third subculture, which coincided with a significant decrease in DNA methylation evaluated via ELISA, unprecedented analysis carried out during bamboo micropropagation. As for mycorrhization, colonization was observed only in plants grown on MSR (16% of the plants) and MS/2 medium with 25% of the total amount of sucrose (25% of the plants). These results will support the development of efficient in vitro mycorrhization protocols for D. asper and, consequently, the optimization of the quality of the micropropagated plantlets.

Key message

In this study a protocol for micropropagation and in vitro mycorrhization of Dendrocalamus asper was developed and DNA hypomethylation was found to be associated with the decrease in multiplication rate of shoots after successive subcultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aggangan NS, Cortes AD, Reaño CE (2019) Growth response of cacao (Theobroma cacao L.) plant as affected by bamboo biochar and arbuscular mycorrhizal fungi in sterilized and unsterilized soil. Biocatal Agric Biotechnol 22:101347

    Article  Google Scholar 

  • Ahmad A, Anis M (2019) Meta-topolin improves in vitro morphogenesis, rhizogenesis and biochemical analysis in Pterocarpus marsupium Roxb.: a potential drug-yielding tree. J Plant Growth Regul 38:1007–1016

    Article  CAS  Google Scholar 

  • Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M (2017) Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci USA 114(4):E9403–E9412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aremu AO, Bairu MW, Doležal K, Finnie JF, Van Staden J (2012) Topolins: a panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult 108:1–16

    Article  CAS  Google Scholar 

  • Arshad SM, Kumar A, Bhatnagar SK (2005) Micropropagation of Bambusa wamin through shoot proliferation of mature nodal explants. J Biol Res 3:59–66

    CAS  Google Scholar 

  • Arya S, Sharma S, Kaur R, Arya I (1999) Micropropagation of Dendrocalamus asper by shoot proliferation using seeds. Plant Cell Rep 18:879–882

    Article  CAS  Google Scholar 

  • Azadeh A, Sá AD, Kadivar M, Gauss C, Savastano Junior H (2022) The effect of densification on physical and mechanical properties of bamboo Dendrocalamus asper. Eur J Wood Prod 80:877–888

    Article  Google Scholar 

  • Bairu MW, Stirk WA, Dolezal K, Van Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ Cult 90:15–23

    Article  CAS  Google Scholar 

  • Banerjee M, Gantait S, Pramanik BR (2011) A two step method for accelerated mass propagation of Dendrocalamus asper and their evaluation in field. Physiol Mol Biol Plants 17(4):387–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  PubMed  Google Scholar 

  • Bécard G, Piché Y (1992) Establishment of vesicular-arbuscular mycorrhiza in root organ culture: review and proposed methodology. In: Norris JR, Ribbons DW (org) (eds) Methods in microbiology. Academic Press, London, pp 89–108

    Google Scholar 

  • Benton A (2015) Priority species of bamboo. In: Liese M, Kohl M (eds) Bamboo (tropical forestry), vol 10. Springer, Cham, pp 31–41

    Google Scholar 

  • Brault M, Maldiney R (1999) Mechanisms of cytokinin action. Plant Physiol Biochem 37(5):403–412

    Article  CAS  Google Scholar 

  • Bressan W (2002) Factors affecting “in vitro” plant development and root colonization of sweet potato by Glomus etunicatum Becker and Gerd. Braz J Microbiol 33:33–34

    Article  Google Scholar 

  • Cavalcante UM, Maia LC, Nogueira RJMC, Santos VF (2001) Respostas fisiológicas em mudas de maracujazeiro amarelo (Passiflora edulis Sims. f. flavicarpa deg.) inoculadas com fungos micorrízicos arbusculares e submetidas a estresse hídrico. Acta Bot Bras 15(3):379–390

    Article  Google Scholar 

  • Cheng L, Bucciarelli B, Shen J, Allan D, Vance CP (2011) Update on white lupin cluster root acclimation to phosphorus deficiency. Plant Physiol 156(3):1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Summers W, Paszkowski U (2018) Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu Rev Phytopathol 56(1):135–160

    Article  CAS  PubMed  Google Scholar 

  • Clark L, Londoño X, Ruiz-Sanchez E (2015) Bamboo taxonomy and habitat. In: Liese W, Kohl M (eds) Bamboo tropical forestry. Springer, cham, pp 1–30

    Google Scholar 

  • Desjardins Y, Hernández-Sebastià C, Piché Y (2005) Monoxenic culture as a tool to study the effect of the arbuscular mycorrhizal symbiosis on the physiology of micropropagated plantlets in vitro and ex vitro. In: Declerck S, Fortin JA, Strullu DG (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 181–199

    Chapter  Google Scholar 

  • Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duarte-Aké F, Castillo-Castro E, Pool FB, Espadas F, Santamaría JM, Robert ML, DelaPeña C (2016) Physiological differences and changes in global DNA methylation levels in Agave angustifolia Haw. Albino variant somaclones during the micropropagation process. Plant Cell Rep 35(12):2489–2502

    Article  PubMed  Google Scholar 

  • Elayaraja D, Subramanyam K, Vasudevan V, Sathish S, Kasthurirengan S, Ganapathi A, Manickavasagam M (2019) Meta-topolin (mT) enhances the invitro regeneration frequency of Sesamum indicum (L.). Biocatal Agric Biotechnol 21:101320

    Article  Google Scholar 

  • Felisberto MHF, Beraldo AL, Clerici MTPS (2017) Young bamboo culm flour of Dendrocalamus asper: technological properties for food applications. Lwt-Food Sci Technol 76:230–235

    Article  CAS  Google Scholar 

  • Folli-Pereira MS, Haddad LS, Bazzoli DMS, Kasuya MCM (2012) Micorriza arbuscular e a tolerância das plantas ao estresse. Rev Bras Ciênc Solo 36(6):1663–1679

    Article  CAS  Google Scholar 

  • Gielis J, Peeters H, Gillis K, Oprins J, Debergh PC (2002) Tissue culture strategies for genetic improvement of bamboo. Acta Hortic 552:195–204

    Google Scholar 

  • Gomes HT (2016) Análise morfoanatômica, bioquímica e molecular de dendezeiros (Elaeis guineensis Jacq.) Regenerados por embriogênese somática em sistema de imersão temporária. Tese de doutorado, Universidade de Brasília

    Google Scholar 

  • Gutjahr C, Parniske M (2017) Cell biology: control of partner lifetime in a plant–fungus relationship. Curr Biol 27(11):R420–R423

    Article  CAS  PubMed  Google Scholar 

  • Halder T, Ghosh B (2021) Cytological, genetical and phytochemically stable meta-topolin (mT) - induced mass propagation of underutilized Physalis minima L. for production of withaferin A. Biocatal Agric Biotechnol 33:102012

    Article  CAS  Google Scholar 

  • Harding K, Benson EE, Roubelakis-Angelakis KA (1996) Methylated DNA changes associated with the initiation and maintenance of Vitis vinifera in vitro shoot and callus cultures: a possible mechanism for age-related changes. Vitis 35(2):79–85

    CAS  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • Huang H, Han SS, Wang Y, Zhang XZ, Han ZH (2012) Variations in leaf morphology and DNA methylation following in vitro culture of Malus xiaojinensis. Plant Cell Tissue Organ Cult 111(2):153–161

    Article  CAS  Google Scholar 

  • Jekayinoluwa T, Gueye B, Bhattacharjee R, Osibanjo O, Shah T, Abberton M (2019) Agromorphologic, genetic and methylation profiling of Dioscorea and Musa species multiplied under three micropropagation systems. PLoS One 14(5):e0216717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha A, Kumar A, Saxena RK, Kamalvanshi M, Chakravarty N (2012) Effect of arbuscular mycorrhizal inoculations on seedling growth and biomass productivity of two bamboo species. Indian J Microbiol 52(2):281–285

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Gou G, Ding Y (2013) Influences of arbuscular mycorrhizal fungi on growth and mineral element absorption of Chenglu hybrid bamboo seedlings. Pak J Bot 45(1):303–310

    Google Scholar 

  • Jiménez VM, Guevara E (2007) Micropropagation of bamboo species through axillary shoot proliferation. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht

    Google Scholar 

  • Karim R, Tan YS, Singh P, Khalid N, Harikrishna JA (2018) Expression and DNA methylation of SERK, BBM, LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf. Physiol Mol Biol Plants 24:741–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse F, Bücking Jansa J, H, (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882

    Article  CAS  PubMed  Google Scholar 

  • Kucharska D, Orlikowska T, Maciorowski R, Kunka M, Wójcik D, Pluta S (2020) Application of meta-topolin for improving micropropagation of gooseberry (Ribes grossularia). Sci Hortic 272:109529

    Article  CAS  Google Scholar 

  • Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467

    Article  CAS  Google Scholar 

  • Mankessi F, Saya AR, Favreau B, Doulbeau S, Conejero G, Lartaud M, Verdeil J-L, Monteuuis O (2011) Variations of DNA methylation in Eucalyptus urophylla × Eucalyptus grandis shoot tips and apical meristems of different physiological ages. Physiol Plant 143(2):178–187

    Article  CAS  PubMed  Google Scholar 

  • Manokari M, Metha SR, Priyadharshini S, Badhepuri MK, Dulam S, Jayaprakash K, Cokul RM, Dey A, Rajput BS, Shekhawat MS (2021) Meta-topolin mediated improved micropropagation, foliar micro-morphological traits, biochemical profiling, and assessment of genetic fidelity in Santalum album L. Ind Crops Prod 171:113931

    Article  Google Scholar 

  • Manokari M, Priyadharshini S, Jogam P, Dey A, Shekhawat MS (2021) Meta-topolin and liquid medium mediated enhanced micropropagation via ex vitro rooting in Vanilla planifolia jacks. ex Andrews. Plant Cell Tissue Organ Cult 146:69–82

    Article  CAS  Google Scholar 

  • Moura JB, Souza RF, Junior WGV, Lima IR, Brito GH, Marín C (2019) Arbuscular mycorrhizal fungi associated with bamboo under cerrado brazilian vegetation. J Soil Sci Plant Nutr 19:954–962

    Article  Google Scholar 

  • Mudoi KD, Saikia SP, Borthakur M (2009) Invitro micropropagation of Bambusa balcooa Roxb. Through nodal explants from field-grown culms and scope for upscaling. Curr Sci 96(7):962–966

    Google Scholar 

  • Mudoi KD, Saikia SP, Borthakur M (2014) Effect of nodal positions, seasonal variations, shoot clump and growth regulators on micropropagation of commercially important bamboo, Bambusa nutans Wall. ex Munro. Afr J Biotechnol 13:1961–1972

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mustafa AA, Derise MR, Yong WTL, Rodrigues KF (2021) A concise review of Dendrocalamus asper and related bamboos: germplasm conservation, propagation and molecular biology. Plants 10:1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadha HK, Kumar R, Sharma RK, Anand M, Sood A (2013) In vitro propagation of Dendrocalamus asper and testing the clonal fidelity using RAPD and ISSR markers. Int J Curr Res 5(8):2060–2067

    CAS  Google Scholar 

  • Nogueira JS (2018) Estratégias para a conservação ex situ de Dendrocalamus asper e micropropagação de espécies do gênero Guadua (Bambusoideae, Poaceae). Tese de doutorado, Universidade de Brasília

  • Nogueira JS, Costa FHS, Vale PAA, Luis ZG, Scherwinski-Pereira JE (2017) Micropropagação de bambu em larga- escala: princípios, estratégias e desafios. In: Fernandes T (org.) (ed) Bambus no Brasil da biologia à tecnologia. ICH - Instituto Ciência Hoje, Rio de Janeiro, pp 103–129

    Google Scholar 

  • Nogueira JS, Gomes HT, Scherwinski-Pereira JE (2019) Micropropagation, plantlets production estimation and ISSR marker-based genetic fidelity analysis of Guadua magna e G. angustifolia. Pesq Agrop Trop 49:e53743

    Article  Google Scholar 

  • Orlikowska T, Nowak K, Reed B (2017) Bacteria in the plant tissue culture environment. Plant Cell Tissue Organ Cult 12:487–508

    Article  Google Scholar 

  • Ornellas TS, Werner D, Holderbaum DF, Scherer RF, Guerra MP (2017) Effects of vitrofural, BAP and meta-topolin in the in vitro culture of Dendrocalamus asper. Acta Hortic 1155:285–292

    Article  Google Scholar 

  • Parra R, Pastor MT, Pérez-Payá E, Amo-Marco JB (2001) Effect of invitro shoot multiplication and somatic embryogenesis on 5-methylcytosine content in DNA of Myrtus communis L. Plant Growth Regul 33(2):131–136

    Article  CAS  Google Scholar 

  • Pouyu-Rojas E, Siqueira JO, Santos GJGD (2006) Compatibilidade simbiótica de fungos micorrízicos arbusculares com espécies arbóreas tropicais. Rev Bras Ciênc Solo 30(3):413–424

    Article  Google Scholar 

  • Sandhu M, Wani SH, Jiménez VM (2018) In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell Tissue Organ Cult 132:27–53

    Article  CAS  Google Scholar 

  • Saxena S (1990) In vitro propagation of the bamboo (Bambusa tulda Roxb.) through shoot proliferation. Plant Cell Rep 9(8):431–434

    Article  CAS  PubMed  Google Scholar 

  • Silva AA, Delatorre CA (2009) Alterações na arquitetura de raiz em resposta à disponibilidade de fósforo e nitrogênio. Rev Ciênc Agrovet 8(2):152–163

    Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2012) Micropropagation of Dendrocalamus asper {Schult. & Schult F.} Backer ex k. heyne): an exotic edible bamboo. J Plant Biochem Biotechnol 21(2):220–228

    Article  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2013) Evaluation of genetic fidelity of in vitro raised plants of Dendrocalamus asper (Schult. & Schult. F.) Backer ex K. Heyne using DNA-based markers. Acta Physiol Plant 35:419–430

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smulders MJ, Klerk GJ (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  • Solís MT, Rodríguez-Serrano M, Meijón M, Cañal MJ, Cifuentes A, Risueño MC, Testillano PS (2012) DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J Exp Bot 63(18):6431–6444

    Article  PubMed  PubMed Central  Google Scholar 

  • Solís M-T, Cano V, Risueño MC (2015) 5-Azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Front Plant Sci 6:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Soumare A, Diédhiou AG, Arora NK, Al-Ani LKT, Ngom M, Fall S, Hafidi M, Ouhdouch Y, Kouisni L, Sy MO (2021) Potential role and utilization of plant growth promoting microbes in plant tissue culture. Front Microbiol 12:649878

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza FA, Berbara RLL (1999) Ontogeny of Glomus clarum, in Ri T-DNA transformed roots. Mycologia 91(2):343–350

    Article  Google Scholar 

  • Strullu DG, Romand C (1986) Methode d’obtention d’endomycorhizes a vesicules et arbuscules en conditions axeniques. C R Acad Sci Paris 303:245–250

    Google Scholar 

  • Strullu DG, Romand C (1987) Culture axenique de vesicules isolees a partir d’endomycorhizes et re-association in vitro a des racines de tomate. C R Acad Sci Paris 305:15–19

    Google Scholar 

  • Sumanatrakula P, Kongsunea P, Chotithama L, Sukto U (2015) Utilization of Dendrocalamus asper backer bamboo charcoal and pyroligneous acid. Energy Proced 79:691–696

    Article  Google Scholar 

  • Sun RZ, Zuo EH, Qi JF, Liu Y, Lin CT, Deng X (2020) A role of age-dependent DNA methylation reprogramming in regulating the regeneration capacity of Boea hygrometrica leaves. Funct Integr Genom 20(1):133–149

    Article  CAS  Google Scholar 

  • Suwal MM, Lamichhane J, Gauchan DP (2020) Regeneration technique of bamboo species through nodal segments: a review. Nepal J Biotechnol 28(1):54–68

    Article  Google Scholar 

  • Tariq M, Paszkowski J (2004) DNA and histone methylation in plants. Trends Genet 20(6):244–251

    Article  CAS  PubMed  Google Scholar 

  • Valledor L, Hasbún R, Meijón M, Rodríguez JL, Santamaría E, Viejo M, Berdasco M, Feito I, Fraga MF, Cañal MJ, Rodríguez R (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue Organ Cult 91(2):75–86

    Article  CAS  Google Scholar 

  • Verma RK, Arya ID (1998) Effect of arbuscular mycorrhizal fungal isolates and organic manure on growth and mycorrhization of micropropagated Dendrocalamus asper plantlets and on spore production in their rhizosphere. Mycorrhiza 8:113–116

    Article  Google Scholar 

  • Vestberg M, Cassells AC, Schubert A, Cordier C, Gianinazzi S (2002) Arbuscular mycorrhizal fungi and micropropagation of high value crops. In: Gianinazzi S, Schiiepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Springer, Cham, pp 223–233

    Chapter  Google Scholar 

  • Vining K, Pomraning KR, Wilhelm LJ, Ma C, Pellegrini M, Di Y, Mockler TC, Freitag M, Strauss ST (2013) Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa. BMC Plant Biol 13:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voets L, Dupré de Boulois H, Renard L, Strullu DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248(1):111–118

    Article  CAS  PubMed  Google Scholar 

  • Waikhom SD, Louis B (2014) An effective protocol for micropropagation of edible bamboo species (Bambusa tulda and Melocanna baccifera) through nodal culture. Sci World J. https://doi.org/10.1155/2014/345794

    Article  Google Scholar 

  • Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plant 98:291–297

    Article  CAS  Google Scholar 

  • Wu J, Sun B, Wang Y, Xing G, Ye S, Peng S (2011) Arbuscular mycorrhizal fungal colonization improves regrowth of Bermudagrass (Cynodon dactylon L.) after cutting. Pak J Bot 43:85–93

    Google Scholar 

  • Zhu T, Li L, Feng L, Mo H, Ren M (2020) Target of rapamycin regulates genome methylation reprogramming to control plant growth in Arabidopsis. Front Genet 11:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grant 458151/2013-0).

Author information

Authors and Affiliations

Authors

Contributions

JES-P and FDAH conceived and designed this study. FDAH, IMAS-C, FAS and ALXS carried out, analyzed the experiments, and summarized the results. FDAH, IMAS-C, FAS and JES-P wrote the manuscript. JES-P revised and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jonny Everson Scherwinski-Pereira.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Human and animal rights statement

This research did not involve human participants and/or animals.

Additional information

Communicated by Qiao-Chun Wang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himmen, F.D.A., de Souza, F.A., de Araújo Silva-Cardoso, I.M. et al. Micropropagation, estimation of DNA methylation during multiplication cycles and mycorrhization of seed-derived Dendrocalamus asper (Schultes f.) Backer ex Heyne. Plant Cell Tiss Organ Cult 155, 41–56 (2023). https://doi.org/10.1007/s11240-023-02547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02547-x

Keywords

Navigation