Skip to main content
Log in

Involvement of DNA methylation in tree development and micropropagation

  • Original paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Genes constitute only a small portion of the total genome and precisely controlling their expression represents a substantial problem for their regulation. Furthermore, non-coding DNA, that contains introns repetitive elements and active transposable elements, demands effective mechanisms to silence it long-term. Cell differentiation and development are controlled through temporal and spatial activation and silencing of specific genes. These patterns of gene expression must remain stable for many cell generations and last or change when inductive developmental signals have disappeared or new ones induce new programmes.

What turns genes on and off? Among others, gene regulation is controlled by epigenetic mechanisms, defined as any gene-regulating activity that does not also involve changes in the DNA code and is capable of persisting. It has become apparent that epigenetic control of transcription is mediated through specific states of the chromatin structure. Associations of specific chromosomal proteins, posttranslational histone modifications and DNA methylation are some of the epigenetic mechanisms that are involved in controlling chromatin states. DNA methylation research can be approached from several standpoints, since there is a wide range of techniques available to study the occurrence and localisation of methyldeoxycytosine in the genome. Several studies dealing with DNA methylation in relation to tree development, microproprogation and somaclonal variation will be presented, with the final aim of demonstrating that DNA methylation levels are hallmarks for growing seasonal periods and are related to open windows of competence in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altman A, Loberant B (2000) Micropropagation of plants: principles and practices. In: Tj R (ed) Encyclopedia of Cell Technology, vol 1. John Wiley & Sons, Inc., New York, pp 916–929

  • Alvarez-Venegas R, Avramova Z (2005) Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. NAR 33:5199–5207

    Article  PubMed  CAS  Google Scholar 

  • Anderson J, Chao W, Horvath D. (2001) A current review on the regulation of dormancy in vegetative buds. Weed Sci 49:581–589

    Article  CAS  Google Scholar 

  • Arnholdt-Schmitt B, Herterich S, Neumann K (1995) Physiological aspects of genome variavility in tissue culture. I. growth phase-dependent differential DNA methylation of the carrot genome (Daucus carota L.) during primary culture. TAG 91:809–815

    CAS  Google Scholar 

  • Baurens FC, Nicolleau J, Legavre T, Verdeil JL, Monteuuis O (2004) Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol 24:401–407

    PubMed  CAS  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Ann Rev Plant Biol 55:31–68

    Google Scholar 

  • Bonga JM, von Aderkas P (1993) Rejuvenation of tissues from mature conifers and its implications for propagation in vitro. In: Ahuja MR, Libby WJ (eds) Clonal forestry I, genetics and biotechnology. Springer-Verlag, Berlin, Heidelberg, pp 182–199

  • Brar DS, Jain SM (1998) Somaclonal variation: mechanisms and applications in crop improvement. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Boston, USA, pp17–37

    Google Scholar 

  • Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization and the initiation of flowering. PNAS 90(1):287–291

    Article  PubMed  CAS  Google Scholar 

  • Causevic A, Delaunay A, Ounnar S, Righezza M, Delmotte F, Brignolas F, Hagège D, Maury S (2005) DNA methylation and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol Biochem 43:681–691

    Article  PubMed  CAS  Google Scholar 

  • Charbit E, Legavre T, Lardet L, Bourgeois E, Ferrière N, Carron MP (2004) Identification of differentially expressed cDNA sequences and histological characteristics of Hevea brasiliensis calli in relation to their embryogenic and regenerative capacities. Plant Cell Rep 22:539–548

    Article  PubMed  CAS  Google Scholar 

  • de Diego JG, Rodríguez FD, Rodríguez Lorenzo JL, Cervantes E, Grappin P (2006) cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences . J Plant Physiol 163:452–462

    Article  PubMed  CAS  Google Scholar 

  • de Keukeleire P, Maes T, Sauer M, Zethof J, Van Montagu M, Gerats T (2001) Analysis by Transposon Display of the behavior of the dTph1 element family during ontogeny and inbreeding of Petunia hybrida. Mol Genet Genomics 265:72–81

    Article  PubMed  Google Scholar 

  • Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1998) DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:223–247

    Article  PubMed  CAS  Google Scholar 

  • Finnegan EJ, Kovak KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    Article  PubMed  CAS  Google Scholar 

  • Finnegan J, Kovak KA, Jaligot E, Sheldon CC, Peacock WJ, Dennis ES (2005) The downregulation of Flowering Locus C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J 44(20):420–432

    Article  CAS  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (2000) DNA methylation, a key regulator of plant development and other processes. Curr Opin Gen Dev 10:217–223

    Article  CAS  Google Scholar 

  • Fraga M, Cañal M, Rodriguez R (2002a) Phase-change related epigenetic and physiological changes in Pinus radiata D. Don Planta 215:672–678

    Article  CAS  Google Scholar 

  • Fraga MF, Esteller M (2002) DNA Methylation: A profile of methods and applications. BioTechniques 33(3):632–649

    PubMed  CAS  Google Scholar 

  • Fraga MF, Rodriguez R, Cañal MJ (2002c) Genomic DNA methylation–demethylation during aging and reinvigoration of Pinus radiata. Tree Physiol 22:813–816

    PubMed  CAS  Google Scholar 

  • Fraga MF, Uriol E, Diego LB, Berdasco M, Esteller M, Cañal MJ, Rodríguez R (2002b) High-performance capillary electrophoretic method for the quantification of 5-methyl 2′-deoxycytidine in genomic DNA: Application to plant, animal and human cancer tissues. Electrophoresis 23:1677–1681

    Article  PubMed  CAS  Google Scholar 

  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. PNAS 89:1827–1831

    Article  PubMed  CAS  Google Scholar 

  • Galaud JP, Gaspa T, Boyer N (1993a) Effect of anti-DNA methylation drugs on growth, level of methylated DNA, peroxidase activity and ethylene production of Bryonia dioica internodes. Physiologia plantarum 87:528–534

    Article  CAS  Google Scholar 

  • Galaud JP, Gaspa T, Boyer N (1993b) Inhibition of internode growth due to mechanical stress in Bryonia dioica: relationship between changes in DNA methylation and ethylene metabolism. Physiologia plantarum 87:25–30

    Article  CAS  Google Scholar 

  • Gerger RK, Peacock WJ, Dennis ES, Finnegan EJ (2003) Opposing effects of reduced DNA methylation on flowering time in Arabidopsis thaliana. Planta 2003(3):461–466

    Google Scholar 

  • Goodrich J, Tweedie S (2002) Remembrance of things past: Chromatin remodelling in plan development. Ann Rev Cell Dev Biol 18:707–746

    Article  CAS  Google Scholar 

  • Grandbastien M (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci Rev 3:181–187

    Article  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96:1143–1164

    Article  PubMed  CAS  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2006) Epigenetics and its implications for plant biology 2. The ‘epigenetic epiphany’: epigenetics, evolution and beyond. Ann Bot 97:11–27

    Article  PubMed  CAS  Google Scholar 

  • Hasbún R, Valledor L, Berdasco M, Santamaría E, Cañal MJ, Rodríguez R, Rios D, Sánchez M (2005) In vitro proliferation and Genome DNA methylation in adult chesnuts. Act Hort 693:333–339

    Google Scholar 

  • Hasbún R, Valledor L, Berdasco M, Santamaría E, Cañal MJ, Rodríguez R, (2007) Dynamics of DNA methylation during chestnut trees development, Application to breeding programs. Act Hort (in press)

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. PNAS 93:7783–7788

    Article  PubMed  CAS  Google Scholar 

  • Horvath D, Chao W, Anderson J, Foley M. (2003) Knowing when to grow: signal transduction processes regulating dormancy in vegetative buds. Trends Plant Sci 8:534–540

    Article  PubMed  CAS  Google Scholar 

  • Jaligot E, Rival A, Beulé T, Dussert S, Verdeil JL (2000) Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis. Plant Cell Rep 19:684–690

    Article  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the Histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Johnston JW, Harding K, Bremner DH, Souch G, Green J, Lynch PT, Grout B, Benson EE (2005) HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol Biochem 43:844–853

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Ratcliff F, Baulcombe DC (2001) RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol 11:747–757

    Article  PubMed  CAS  Google Scholar 

  • Joyce SM, Cassells AC (2002) Variation in potato microplant morphology in vitro and DNA methylation. Plant Cell Tissue Organ Cult 70:125–137

    Article  CAS  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler SM, Phillips RL (1993) Tissue culture-induced DNA methylation variation in maize. PNAS 90:8773–8776

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution in wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. PNAS 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Karp A (1994) Origins, causes, and uses of variation in plant tissue cultures. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 139–151

    Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kovarìk A, Matyásek R, Leitch B, Gazdová B, Fulnecek J, Bezdek M (1997) Variability in CpNpG methylation in higher plant genomes. Gene 204:308–315

    Article  Google Scholar 

  • Kubis SE, Castilho AMF, Vershinin AV, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Han FP, Tan M, Shan XH, Dong YZ, Wang XZ, Fedak GS, Hao·Bao L (2004) Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. TAG 109:200–209

    Article  PubMed  CAS  Google Scholar 

  • Maekawa M, Hase Y, Shikazono N, Tanaka A (2003) Induction of somatic instability in stable yellow leaf Mutant of rice by ion beam irradiation. Nucl Instr and Meth in Phys Res B 206:579–585

    Article  CAS  Google Scholar 

  • Mathieu O, Bender J (2004) RNA-directed DNA methylation. J Cell Sci 117:4881–4888

    Article  PubMed  CAS  Google Scholar 

  • Meijón M (2005) Desarrollo vegetativo y floral en azalea. Marcadores moleculares y fisiológicos de calidad de planta. Dissertation, University of Oviedo

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation Abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  PubMed  CAS  Google Scholar 

  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marín MI, Martínez-Macias MI, Ariza RR, Roldán Arjona T (2006) Demeter and Repressor Of Silencing 1 encode 5-methylcytosine-DNA glycosylases. PNAS 103:6853–6858

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T,Kamiya Y,Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41(5):697–709

    Article  PubMed  CAS  Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. PNAS 91:5222–5226

    Article  PubMed  CAS  Google Scholar 

  • Portis E, Acquadro A, Lanteri S (2004) Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 166(1):169–178

    Article  CAS  Google Scholar 

  • Rabinowicz PD, Palmer LE, May BP, Hemann MT, Lowe SW, McCombie WR, Martienssen RA (2003) Genes and transposons are differentially methylated in pants, but not in mammals. Genome Res 13:2658–2664

    Article  PubMed  CAS  Google Scholar 

  • Ramchandani S, Bhattacharya SK, Cervoni M, Szyf M (1999) DNA methylation is a reversible biological signal. PNAS 96:6107–6112

    Article  PubMed  CAS  Google Scholar 

  • Rey M, Diaz-Sala C, Rodríguez R (1994) Effect of repeated severe pruning on endogenous polyamine content in hazelnut trees. Physiologia Plantarum 92(3):487–492

    Article  CAS  Google Scholar 

  • Reyes Rosa JC, Gruissem HW (2002) Chromatin-Remodeling and Memory Factors. New Regulators of Plant Development. Plant Physiol 130(3):1090–1101

    Article  CAS  Google Scholar 

  • Richards EJ, Elgin SC (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108:489–500

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez R, Fraga MF, Pacheco J, Cañal MJ (1998) Envejecimiento vegetal. Una barrera a la propagación vegetativa. Alternativas In: Ríos DG, Olate MS (eds)

  • Rohde A, Prensen E, De Rycke R, Engler G, Van Montagu M, Boerjan W (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell 14:1885–1901

    Article  PubMed  CAS  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-García L, Cervera M, Martínez-Zapater J (2005) DNA methylation increases throughout Arabidopsis development. Planta 222:201–206

    Article  CAS  Google Scholar 

  • Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Salajova T, Salaj J, Kormutak A, (1999) Initiation of embryogenic tissues and plantlet regeneration from somatic embryos of Pinus nigra Arn. Plant Sci 145:33–40

    Article  CAS  Google Scholar 

  • Saze H, Scheid OM, Paszkowski J (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Gen 34:65–69

    Article  CAS  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao R (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40:173–187

    Article  PubMed  CAS  Google Scholar 

  • Shapiro R, Servis RE, Welcher M (1970) Reactions of uracil and cytosine derivatives with sodium bisulfite:a specific deamination method. J Am Chem Soc 92:422–424

    Article  CAS  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards A, Peacock WJ, Dennis ES (1999) The FLF Mads Box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458

    Article  PubMed  CAS  Google Scholar 

  • Shimizu-Sato S, Mori H (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol 127:1405–1413

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi M, Hayatsu H (2004) High-speed conversion of cytosine to uracil in bisulfite genomic sequencing analysis of dna methylation. DNA Res 11:409–415

    Article  PubMed  CAS  Google Scholar 

  • Singer T, Yordan C, Martienssen RA (2001) Robertson’s mutator transposons in A. thaliana are regulated by the chromatin-re-modelling gene Decrease in DNA Methylation (DDM1). Genes Dev 15:591–602

    Article  PubMed  CAS  Google Scholar 

  • Smulders MJM, Rus-Kortekaas W, Vosman B (1995) Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. TAG 91:1257–1264

    CAS  Google Scholar 

  • Steimer A, Schob H, Grossniklaus U (2004) Epigenetic control of plant development: new layers of complexity. Curr Opin Plant Biol 7:11–19

    Article  PubMed  CAS  Google Scholar 

  • Sung S, Amasino R (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10

    Article  PubMed  CAS  Google Scholar 

  • Tariq M, Paszkowski J (2004) DNA and histone methylation in plants. Trends Genet 20:244–251

    Article  PubMed  CAS  Google Scholar 

  • Valledor L (2005) Monitorización epigenética de la producción comercial de cuatro clones de Pinus radiata D. Don mediante estaquillado y macroinjerto. Dissertation, University of Oviedo

  • Vlasova TI, Demidenko ZN, Kirnos MD, Vanyushin BF (1995) In vitro DNA methylation by wheat nuclear cytosine DNA methytransferase: effect of phytohormones. Gene 157:279–281

    Article  PubMed  CAS  Google Scholar 

  • von Aderkas P, Bonga J (2000) Influencing micropropagation and somatic embrygenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    Article  PubMed  CAS  Google Scholar 

  • Walbot V, Cullis CA (1985) Rapid genomic change in higher plants. Annu Rev Plant Physiol 36:367–396

    Article  CAS  Google Scholar 

  • Warnecke PM, Stirzaker C, Song J, Grunau C, Melki JR, Clarka SJ (2002) Identification and resolution of artifacts in bisulfite sequencing. Methods 27:101–107

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw E, Martin DIK (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27:361–365

    Article  PubMed  CAS  Google Scholar 

  • Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532–2534

    Article  PubMed  CAS  Google Scholar 

  • Yang I, Park IY, Jang S-M, Shi LH, Ku H-K, Park S-R (2006) Rapid quantification of DNA methylation through dNMP analysis following bisulfite-PCR. Nucl Acids Res 34(e61):61–69

    Article  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Zluvova J, Janousek B, Vyskot B (2001) Immunohistochemical study of DNA methylation dynamics during plant development. J Exp Bot 52:2265–2273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial support needed to guarantee our progress into the insight of ageing, phase-change, and reinvigoration, as well as the progress being made in the research for quality markers has come from EU Projects FAIR3-CT96-1445, INCO 10063, and MCT-AGL2000-2126, AGL 2004-00810 Spanish National Projects. The Spanish M.E.C.D. supported fellowships of all young researchers. We would also like to thank Ms. Priscilla Chase for her linguistic revision of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valledor, L., Hasbún, R., Meijón, M. et al. Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tiss Organ Cult 91, 75–86 (2007). https://doi.org/10.1007/s11240-007-9262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9262-z

Keywords

Navigation