Skip to main content

Monoxenic Culture as a Tool to Study the Effect of the Arbuscular Mycorrhizal Symbiosis on the Physiology of Micropropagated Plantlets in Vitro and ex Vitro

  • Chapter
In Vitro Culture of Mycorrhizas

Part of the book series: Soil Biology ((SOILBIOL,volume 4))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Agely AK, Reeves FB (1995) Inland sand dune mycorrhizae: Effects of soil depth, moisture and pH on colonization of Oryzopsis hymenoides. Mycologia 87:54–60

    Google Scholar 

  • Augé R (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Augé RM, Stodola JW (1990) An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol 115:285–295

    Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1986) Osmotic adjustment in leaves of VA mycorrhizal and nonmycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770

    PubMed  Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1987) Rose leaf elasticity changes in response to mycorrhizal colonization and drought acclimatization. Physiol Plant 82:765–770

    Google Scholar 

  • Augé R, Stodola JW, Brown MS, Bethlenfalvay GJ (1992) Stomatal response of mycorrhizal cowpea and soybean to short-term osmotic stress. New Phytol 120:117–125

    Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Google Scholar 

  • Bécard G, Piché Y (1992) Establishment of VA mycorrhizae in root organ culture: review and proposed methodology. In: Varma A, Norris JR, Read DJ (eds) Methods in microbiology: experiments with mycorrhizae. Academic Press, New York, pp 89–108

    Google Scholar 

  • Bonfante P, Perotto S (1995) Tansley review no. 82 — strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:2–21

    Google Scholar 

  • Bowes G (1991) Growth at elevated CO2 — photosynthetic response mediated through RuBisCO. Plant Cell Environ 14:795–806

    CAS  Google Scholar 

  • Bressan W (2002) Factors affecting “in vitro” plant development and root colonization of sweet potato by Glomus etunicatum Becker & Gerd. Braz J Microbiol 33:33–34

    Google Scholar 

  • Cassells AC, Mark GL, Periappuaram C (1996) Establishment of arbuscular mycorrhizal fungi in autotrophic strawberry cultures in vitro. Comparison with inoculation of microplants in vivo. Agronomie 16:625–632

    Google Scholar 

  • Chabot S, Bel-rhild R, Chénevert R, Piché Y (1992) Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoid compounds under CO2-enriched conditions. New Phytol 122:461–467

    CAS  Google Scholar 

  • Chavez MCG, Ferrara-Cerrato R (1990) Effect of vesicular-arbuscular mycorrhizae on tissue culture-derived plantlets of strawberry. Hortic Sci 25:903–905

    Google Scholar 

  • Declerck S, Strullu DC, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated froma tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585

    Google Scholar 

  • Diaz-Pérez JC, Shackel KA, Sutter E (1995) Relative water content and water potential of tissue-cultured apple shoots under water deficits. J Exp Bot 46:111–118

    Google Scholar 

  • Drüge U, Schönbeck F (1992) Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissiumum L.) in relation to cytokinin levels. J Plant Physiol 14:40–48

    Google Scholar 

  • Duan XG, Neuman DS, Reiber JM, Green CD, Saxton AM, Augé RRM (1996) Mycorrhizal influence on hydraulic and hormonal factors involved in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550

    CAS  Google Scholar 

  • Elmeskaoui A, Damont JP, Poulin MJ, Piché Y, Desjardins Y (1995) A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5:313–319

    Article  Google Scholar 

  • Fitter AH (1991) Cost and benefits of mycorrhizas — implications for the functioning under natural conditions. Experimentia 47:350–355

    Article  Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of fluorescence. Biochem Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Georges E, Haussler KU, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137

    Google Scholar 

  • Gerbaud A, André M (1980) Effect of CO2, O2 and light on photosynthesis and photorespiration in wheat. Plant Physiol 66:1032–1036

    CAS  PubMed  Google Scholar 

  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724

    Article  Google Scholar 

  • Goicoechea N, Dolezal K, Antolin MC, Strnad M, Sánchez-DÍaz M (1995) Influence of mycorrhizae and rhizobium on cytokinin content in drought-stressed alfalfa. J Exp Bot 46:1543–1549

    CAS  Google Scholar 

  • Goicoechea N, Antolin MC, Sanchez-Diaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997

    Article  CAS  Google Scholar 

  • Hernández-Sebastià C (1998) Adaptation au stress hydrique des vitroplants de fraisier inoculés avec Glomus intraradices Schenk & Smith dans un système de culture tripartite. PhD Thesis, Université Laval, Québec

    Google Scholar 

  • Hernández-Sebastià C, Piché Y, Desjardins Y (1999) Water relations of whole strawberry plantlets in vitro inoculated with Glomus intraradices in a tripartite culture system. Plant Sci 143:81–91

    Google Scholar 

  • Hernández-Sebastià C, Samson G, Bernier PY, Piché Y, Desjardins Y (2000) Glomus intraradices causes differential changes in amino acid and starch concentrations of in vitro strawberry subjected to water stress. New Phytol 148:177–186

    Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Farnham Royal (Bucks) Commonwealth Agricultural Bureau, London

    Google Scholar 

  • Hoagland DR, Arnon HI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Circ 347:1–32

    Google Scholar 

  • Hodges A (1996) Impact of elevated CO2 on mycorrhizal associations and implications for plant growth. Biol Fertil Soil 23:388–398

    Google Scholar 

  • Koide R (1993) Physiology of mycorrhizal plant. Adv Plant Pathol 9:33–54

    Google Scholar 

  • Kothari SK, Marschner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol 116:303–311

    Google Scholar 

  • Laforge F, Desjardins Y, Graham MED, Gosselin A (1990) Miniature growth chambers for the study of environmental conditions in vitro. Can J Plant Sci 70:825–836

    Article  Google Scholar 

  • Lewis JD, Strain BR (1996) The role of mycorrhizas in the response of Pinus taeda seedlings to elevated CO2. New Phytol 133:431–443

    Google Scholar 

  • Louche-Tessandier D, Samson G, Hernandez-Sebastia C, Chagvardieff P, Desjardins Y (1999) Importance of light and CO2 on the effects of endomycorrhizal colonization on growth and photosynthesis of potato plantlets (Solanum tuberosum) in an in vitro tripartite system. New Phytol 142:539–550

    Article  Google Scholar 

  • Lubraco G, Schubert A, Previati A (2000) Micropropagation and mycorrhization of Allium sativum. Acta Hortic 530:339–343

    Google Scholar 

  • MacDonald RM (1981) Routine production of axenic vesicular-arbuscular mycorrhizas. New Phytol 89:87–93

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium, for rapid growth and bio-assay with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Pons F, Gianinazzi-Pearson V, Navatel JC (1983) Studies of VA mycorrhizae in vitro: mycorrhizal synthesis of axenically propagated wild cherry (Prunus avium L.) plants. Plant Soil 71:217–221

    Article  Google Scholar 

  • Poulin MJ, Bel-Rhlid R, Piché Y, Chênevert R (1993) Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J Chem Ecol 19:2317–2327

    Article  CAS  Google Scholar 

  • Rapparini F, Baraldi R, Bertazza G, Branzanti B, Predieri S (1994) Vesicular-arbuscular mycorrhizal inoculation of micropropagated fruit trees. J Hortic Sci 69:1101–1109

    Google Scholar 

  • Ravolanirina F, Gianinazzi S, Trouvelot A, Carre M (1989) Production of endomycorrhizal explants of micropropagated grapevine rootstocks. Agric Ecosyst Environ 29:323–327

    Google Scholar 

  • RuÍz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Google Scholar 

  • Sánchez-Diaz M, Honrubia M (1994) Water relations and alleviation of drought stress in mycorrhizal plants. In: Gianinazzi S, Schuepp H(eds) Impact of arbuscularmycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 167–178

    Google Scholar 

  • Sands R, Fiscus EL, Reid CPP (1982) Hydraulic properties of pine and bean roots with varying degrees of suberization, vascular differentiation and mycorrhizal infection. Aust J Plant Physiol 9:559–569

    Article  Google Scholar 

  • Schubert A, Mazzitelli A, Gribaudo I (1987) Effect of inoculation with vesicular-arbuscular mycorrhizal fungi on micropropagated Vitis berlandieri X V. rifaria “Kober 5 BB”. In: Ducate G, Jacob M, Simeon A (eds) Plant micropropagation in horticultural industries: preparation, hardening and acclimatization processes. Belgian Plant Tissue Culture Group, Florizel 87, Arlon, Belgium, pp 144–153

    Google Scholar 

  • St-John TV, Hays RI, Reid CPP (1981) A new method for producing pure vesicular-arbuscular mycorrhiza-host cultures without specialized media. New Phytol 89:81–86

    Google Scholar 

  • Strullu DC, Romand C (1986) Méthode d’obtention d’endomycorhizes à vésicules et arbuscules en conditions axéniques. C R Acad Sci Paris 305:15–19

    Google Scholar 

  • Tommerup I, Sivasithamparam K (1990) Zygospores and asexual spores of Gigaspora decipiens, an arbuscular mycorrhizal fungus. Mycol Res 94:897–900

    Article  Google Scholar 

  • Vestberg M, Estaun V (1994) Micropropagated plants, an opportunity to positively manage mycorrhizal activities. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 217–225

    Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Desjardins, Y., Hernández-Sebastià, C., Piché, Y. (2005). Monoxenic Culture as a Tool to Study the Effect of the Arbuscular Mycorrhizal Symbiosis on the Physiology of Micropropagated Plantlets in Vitro and ex Vitro. In: Declerck, S., Fortin, J.A., Strullu, DG. (eds) In Vitro Culture of Mycorrhizas. Soil Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27331-X_10

Download citation

Publish with us

Policies and ethics