Skip to main content
Log in

Effect of macronutrients and micronutrients on biochemical properties in Paulownia shantung

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Paulownia (Paulownia sp) is a fast-growing, industrial and ornamental tree, which has medicinal usages. The effect of nutrients in in vitro regenerated plantlets and somaclonal variation was investigated. Biochemical traits (soluble leaf protein, anthocyanin, flavonoid, proline, carotenoid contents and photosynthetic pigment amounts) in induced embryos and regenerated plantlets were measured. The media of A/2 MS, half-strength MS, and ½&A/4 MS supplemented with a combination of TDZ, 2,4-D, Kin, BAP and GA3 hormones -eight media totally- were used. The shortest duration for direct and indirect somatic embryogenesis was observed in media number eight (½&A/4 MS + 0.3 mg/l 2,4-D + 2 mg/l Kin + 4 mg/l BAP + 0.3 mg/l GA3). Moreover, this medium showed the highest frequency in calli induction, somatic embryos and regenerations. We showed the privilege of full-strength MS in an in vitro propagation of paulownia with no-somaclonal and genomic alterations. For the media with reduced nutrient strength to one-fourth and one-second, somaclonal variation and genomic changes were recorded. Media with decreased macronutrients to half and a quarter amount showed a higher ratio of somatic embryo induction, regeneration, and antioxidant activity. Meanwhile, proline and protein contents were decreased. An increase in chlorophyll content was observed in media with reduced macronutrients amount. Overall, elements may be linked to the frequency of somaclonal variation in an in vitro culture.

Key message

By reducing macronutrients, especially nitrate and ammonium in tissue culture of paulownia plant, somatic embryo induction, regeneration and antioxidant activities increase while, free radicals reduce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article.

Abbreviations

A:

Absorbance

BAP:

6-Benzylaminopurine

GA3 :

Gibberellic acid

MS:

Murashige and skoog

A/2 MS:

Reduction to half of macronutrients in the full-strength MS

½ MS:

Reduction to half the entire full-strength MS content

½&A/4MS:

Reduction to half than twice the entire contents of the medium and reduction to a quarter of the macronutrients in the full-strength MS

2,4-D:

2,4-Dichlorophenoxyacetic acid

Kin:

Kinetin

V:

Volume

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–94

  • Adamczyk B, Smolander A, Kitunen V, Godlewski M (2010) Proteins as nitrogen source for plants: a short story about exudation of proteases by plant roots. Plant Signal Behav 1;5(7):817–819

  • Ariel F, Brault-Hernandez M, Laffont C, Huault E, Brault M, Plet J, Moison M, Blanchet S, Ichanté JL, Chabaud M, Carrere S (2012) Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. Plant Cell 24(9):3838–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Y, Liu G, Shi X, Xing W, Ning G, Liu J, Bao M (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrida ‘Samantha.’ Plant Cell Tiss Org Cult (PCTOC) 109(3):411–418

    Article  CAS  Google Scholar 

  • Bar M, Israeli A, Levy M, Gera HB, Jiménez-Gómez JM, Kouril S, Tarkowski P, Ori N (2016) CLAUSA is a MYB transcription factor that promotes leaf differentiation by attenuating cytokinin signaling. Plant Cell 28(7):1602–1615

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulat 60(1):51

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant and soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bishopp A, Lehesranta S, Vatén A, Help H, El-Showk S, Scheres B, Helariutta K, Mähönen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21(11):927–932

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Bürkle L, Cedzich A, Döpke C, Stransky H, Okumoto S, Gillissen B, Kühn C, Frommer WB (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J 34(1):13–26

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143(2):707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carranza AP, Singh A, Steinberger K, Panigrahi K, Palme K, Dovzhenko A, Dal Bosco C (2016) Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Sci Rep 6(1):1–11

  • Cerezo S, Mercado JA, Pliego-Alfaro F (2011) An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tiss Org Cult (PCTOC) 106(2):337–344

    Article  CAS  Google Scholar 

  • Chakroun A, Jemmali A, Hamed KB, Abdelli C, Druart P (2007) Effet du nitrate d’ammonium sur le développement et l’activité des enzymes anti-oxydantes du fraisier (Fragaria x ananassa L.) micropropagé. BASE

  • Chen SJ, Kao CH (1997) Ammonium-inhibited growth of suspension-cultured rice cells as affected by medium pH. Plant Growth Regulat 21(1):1–6

    Article  CAS  Google Scholar 

  • Chen AH, Yang JL, Da Niu Y, Yang CP, Liu GF, Yu CY, Li CH (2010) High-frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA 3, and BA on somatic embryo development. Plant Cell Tiss Org Cult (PCTOC) 102(3):357–364

    Article  CAS  Google Scholar 

  • Domínguez-Valdivia MD, Aparicio-Tejo PM, Lamsfus C, Cruz C, Martins-Loução MA, Moran JF (2008) Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and-sensitive plants. Physiol Plant 132(3):359–369

  • Dumani Y, Mortazavian SMM, Izadi-Darbandi A, Ramshini H, Amini F (2022) Titanium dioxide nanoparticles affect somatic embryo initiation, development, and biochemical composition in paulownia sp seedlings. Ind Crops Prod 176:114398

    Article  CAS  Google Scholar 

  • Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G (1995) A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol 108(3):1043–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17(3):172–179

    Article  CAS  PubMed  Google Scholar 

  • Hake S, Smith HM, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Dev Biol 20:125–151

  • Hall Q, Cannon MC (2002) The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis. Plant Cell 14(5):1161–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • He T, Vaidya BN, Perry ZD, Parajuli P, Joshee N (2016) Paulownia as a medicinal tree: traditional uses and current advances. Eur J Med Plants 7:1–5

    Article  Google Scholar 

  • Heringer AS, Santa-Catarina C, Silveira V (2018) Insights from proteomic studies into plant somatic embryogenesis. Proteomics 18(5–6):1700265

    Article  Google Scholar 

  • Huseinovic S, Osmanović Z, Bektić S, Ahmetbegović S (2017) Paulownia elongata sy hu in function of improving the quality of the environment. Period Eng Nat Sci 5(2):83

    Google Scholar 

  • Icka P, Damo R, Icka E (2016) Paulownia tomentosa, a fast growing timber. Ann. Valahia Univ. Targoviste, Agric 10(1):14–19

  • Jain SM, Gupta PK (2018) Step wise protocols for somatic embryogenesis of important woody plants. Springer

    Book  Google Scholar 

  • Jariteh M, Ebrahimzadeh H, Niknam V, Mirmasoumi M, Vahdati K (2015) Developmental changes of protein, proline and some antioxidant enzymes activities in somatic and zygotic embryos of Persian walnut (Juglans regia L). Plant Cell Tiss Org Cult (PCTOC) 122(1):101–115

    Article  CAS  Google Scholar 

  • Jiang Y, Huang B (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41(2):436–442

    Article  CAS  Google Scholar 

  • Jiang P, Yuan L, Cai D, Jiao L, Zhang L (2015) Characterization and antioxidant activities of the polysaccharides from mycelium of Phellinus pini and culture medium. Carbohyd Polym 6(117):600–604

    Article  Google Scholar 

  • Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37(2):300–311

    Article  Google Scholar 

  • Krizek DT, Britz SJ, Mirecki RM (1998) Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. New Red Fire Lett Physiol Plant 103(1):1–7

    CAS  Google Scholar 

  • Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology. Academic Press, Cambridge

    Google Scholar 

  • Liu J, Moore S, Chen C, Lindsey K (2017) Crosstalk complexities between auxin, cytokinin, and ethylene in Arabidopsis root development: from experiments to systems modeling, and back again. Molecular Plant 10(12):1480–1496

    Article  CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37(5):720–729

  • Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol 128(2):472–481

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P (2011) The main auxin biosynthesis pathway in Arabidopsis. Proceedings Nati Acad Sci 108(45):18512–18517

  • Nasibi F, Kalantari KM (2005) The effects of UV-A, UV-B and UV-C on protein and ascorbate content, lipid peroxidation and biosynthesis of screening compounds in Brassica napus. Iran J Sci Technol Trans 2005:39–48

    Google Scholar 

  • Navari-Izzo F, Quartacci MF, Izzo R (1990) Water-stress induced changes in protein and free amino acids in field grown maize and sunflower. Plant Physiol Biochem (paris) 28(4):531–537

    CAS  Google Scholar 

  • Pawar B, Prashant KA, Bahurupe J, Jadhav A, Anil KA, Pawar S (2015) Proline and glutamine improve in vitro callus induction and subsequent shooting in rice. Rice Sci 22(6):283–289

    Article  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings Nat Acad Sci 104(49):19631–19636

  • Robert HS, Friml J (2009) Auxin and other signals on the move in plants. Nat Chem Biol 5(5):325–332

  • Romani F (2017) Origin of TAA genes in charophytes: new insights into the controversy over the origin of auxin biosynthesis. Front Plant Sci 20(8):1616

    Article  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs demand. Proc Natl Acad Sci 108(45):18524–18529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N (2010) Cytokinin regulates compound leaf development in tomato. The Plant Cell 22(10):3206–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Gupta S, Lindquist IE, Cameron CT, Mudge J, Rashotte AM (2013) Transcriptome analysis of cytokinin response in tomato leaves. PLoS One 8(1):e55090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si CL, Liu SC, Hu HY, Jiang JZ, Yu GJ, Ren XD, Xu GH (2013) Activity-guided screening of the antioxidants from paulownia tomentosa var tomentosa bark. BioResources. 8(1):628–637

    Google Scholar 

  • Skalák J, Vercruyssen L, Claeys H, Hradilová J, Černý M, Novák O, Plačková L, Saiz-Fernández I, Skaláková P, Coppens F, Dhondt S (2019) Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. Plant J 97(5):805–824

    Article  PubMed  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. The Plant Cell 18(10):2767–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smejkal K, Holubova P, Zima A, Muselik J, Dvorska M (2007) Antiradical activity of paulownia tomentosa (Scrophulariaceae) extracts. Molecules 12(6):1210–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy SL, Mishra A, Puri S (2006) Comparison of growth, biomass and nutrient distribution in five promising clones of Populus deltoides under an agrisilviculture system. Biores Technol 97(1):57–68

    Article  CAS  Google Scholar 

  • Wagner GJ (1979) Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiol 64(1):88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan H, Zhang J, Song T, Tian J, Yao Y (2015) Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp) by high carbon to nitrogen ratios. Front Plant Sci 6:673

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Li SS, Han GZ (2016) Commentary: plant auxin biosynthesis did not originate in charophytes. Front Plant Sci 16(7):158

    Google Scholar 

  • Woods VB (2008) Paulownia as a novel biomass crop for Northern Ireland? Agri-Food and Biosciences Institute, Northern Ireland, United Kingdom. Global Research Unit, AFBI Hillsborough. Occasional publication 7:1-48

  • Wybouw B, De Rybel B (2019) Cytokinin–a developing story. Trends Plant Sci 24(2):177–185

    Article  CAS  PubMed  Google Scholar 

  • Yadav NK, Vaidya BN, Henderson K, Lee JF, Stewart WM, Dhekney SA, Joshee N (2013) A review of paulownia biotechnology: A short rotation, fast growing multipurpose bioenergy tree. Am J Plant Sci 4(11):2070

    Article  Google Scholar 

  • Zuazo VH, Bocanegra JA, Torres FP, Pleguezuelo CR, Martínez JR (2013) Biomass yield potential of paulownia trees in a semi-arid Mediterranean environment (S Spain). Int J Renew Energy Res (IJRER) 3(4):789–793

    Google Scholar 

Download references

Acknowledgements

We thank and appreciate the University of Tehran science & technology park for financial support.

Funding

Funding was provided by University of Tehran Science & Technology Park (Grant No. 120021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Mahdi Mortazavian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Ewa Grzebelus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumani, Y., Mortazavian, S.M.M., Izadi-Darbandi, A. et al. Effect of macronutrients and micronutrients on biochemical properties in Paulownia shantung. Plant Cell Tiss Organ Cult 151, 483–495 (2022). https://doi.org/10.1007/s11240-022-02365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02365-7

Keywords

Navigation