Skip to main content
Log in

High-efficiency cryopreservation of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures: ultrastructural characterization and morpho-physiological features

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Here we evaluated and characterized the growth dynamics of A. angustifolia embryogenic cultures (EC) submitted to different cryotreatment incubation times through morphological and time-lapse cell tracking analyzes. The EC submitted to cryopreservation protocol were evaluated by regrowth rates, and ultrastructural characterization by transmission electron microscopy (TEM). The results indicated that A. angustifolia EC support all the cryoprotection times evaluated, without cell proliferation inhibition, but with noticeable genotype-dependent response in all tested cell lines. The use of 1M DMSO showed non-inhibitory effects to EC regrowth independent of cell line or cryotreatment incubation time. However, after cryopreservation, Cr01 cell line regrowth was 100 % for all cryotreatments incubation times evaluated (30, 60, 120, 240 min), while Cr02 cell line only showed 100 % regrowth in 240 min of cryotreatment. The 100 % cell regrowth obtained in both cell lines indicates that the proposed protocol can be successful applied to A. angustifolia EC cryopreservation. Cell tracking analysis showed a survival and initial proliferation of embryogenic cells, with the first cell regrowth signs after 30 days in culture. TEM analysis revealed a conspicuous cell wall thickening in embryogenic cells after cryotreatment and after thawing, which may be related to osmotic stress response caused by the cryopreservation process. An increased heterochromatin presence was also observed in cryotreated or after thawing cells, may possibly be acting as a cell defense mechanism, decreasing the DNA vulnerability to cleavage and preserving the cell integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez JM, Cortizo M, Ordás RJ (2012) Cryopreservation of somatic embryogenic cultures of Pinus pinaster: effects on regrowth and embryo maturation. Cryoletters 33:476–484

    PubMed  Google Scholar 

  • Bittencourt JVM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 99:580–591

    Article  CAS  PubMed  Google Scholar 

  • Cyr D, Lazaroff WR, Grimes SMA, Quan G, Bethune TD, Dunstan DI, Roberts DR (1994) Cryopreservation of interior spruce (Picea glauca engelmanni complex) embryogenic cultures. Plant Cell Rep 13:574–577

    Article  CAS  PubMed  Google Scholar 

  • Demarchi G, Stefenon VM, Steiner N, Vieira FN, Vesco LL, Guerra MP (2014) Ultra-low temperature conservation of Brazilian pine embryogenic cultures. An Acad Bras Cienc 86:2057–2064

    Article  PubMed  Google Scholar 

  • Durzan DJ (1988) Process control in somatic polyembryogenesis. In: Hallgren JE (ed) Frans symposium department of forest genetics and plant physiology. Proceedings Swedish, Kamataka, pp 147–186

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Article  Google Scholar 

  • Engelmann F, Chabrillange N, Dussert S, Duval Y (1995) Cryopreservation of zygotic embryos and kernels of oil palm (Elaeis guineensis Jacq.). Seed Sci Res 5:81–86

    Article  Google Scholar 

  • Filonova LH, Bozhkov PV, von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264

    Article  CAS  PubMed  Google Scholar 

  • Ford CS, Jones NB, Van Staden J (2000) Cryopreservation and plant regeneration from somatic embryos of Pinus patula. Plant Cell Rep 19:610–615

    Article  CAS  Google Scholar 

  • Fraga HPF, Vieira LN, Puttkammer CC, Oliveira EM, Guerra MP (2015) Time-lapse cell tracking reveals morphohistological features in somatic embryogenesis of Araucaria angustifolia (Bert) O. Trees, Kuntze. doi:10.1007/s00468-015-1244-x

    Google Scholar 

  • Gale S, John A, Benson EE (2007) Cryopreservation of Picea sitchensis (Sitka spruce) embryogenic suspensor masses. CryoLetters 28:225–239

    PubMed  Google Scholar 

  • Golds TJ, Babczinsky J, Rauscher G, Koop HU (1992) Computer-controlled tracking of single cell development in Nicotiana tabacum L. and Hordeum vulgare L. protoplasts embedded in agarose/alginate films. J Plant Physiol 140:582–587

    Article  Google Scholar 

  • Gonzalez-Arnao MT, Panta A, Roca WM, Roosevelt H, Engelmann F (2008) Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tissue Org Cult 92:1–13

    Article  Google Scholar 

  • Guerra MP, Silveira V, Santos ALW, Astarita LV, Nodari RO (2000) Somatic embryogenesis in Araucaria angustifolia (Bert) O. Ktze. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 457–478

    Chapter  Google Scholar 

  • Gupta PK, Pullman G (1991) Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation, US Patent No. 5,036,007

  • Guzmán-García E, Bradaï F, Sánchez-Romero C (2013) Cryopreservation of avocado embryogenic cultures using the droplet-vitrification method. Acta Physiol Plant 35:183–193

    Google Scholar 

  • Häggman H, Ryyänen L, Aronen T, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tissue Organ Cult 54:45–53

    Article  Google Scholar 

  • Häggman H, Aronen T, Ryyänen LA (2000) Cryopreservation of embryogenic cultures of conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 707–728

    Chapter  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Heringer AS, Steinmacher DA, Schmidt EC, Bouzon ZL, Guerra MP (2013a) Survival and ultrastructural features of peach palm (Bactris gasipaes, Kunth) somatic embryos submitted to cryopreservation through vitrification. Protoplasma 250:1185–1193

    Article  PubMed  Google Scholar 

  • Heringer AS, Steinmacher DA, Fraga HPF, Vieira LN, Ree JF, Guerra MP (2013b) Global DNA methylation profiles of somatic embryos of peach palm (Bactris gasipaes Kunth) are influenced by cryoprotectants and droplet-vitrification cryopreservation. Plant Cell Tissue Org Cult 114:365–372

    Article  CAS  Google Scholar 

  • IUCN (2014) IUCN red list of threatened species, version 2014.3. http://www.iucnredlist.org. Accessed 21 May 2015

  • Jo L, Santos ALW, Bueno CA, Barbosa HR, Floh EI (2013) Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential. Tree Physiol 34:94–104

    Article  PubMed  Google Scholar 

  • Jones KH, Senft JA (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate propidium iodide. J Histochem Cytochem 33:77–79

    Article  CAS  PubMed  Google Scholar 

  • Karami O, Aghavaisi B, Pour AM (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190

    Article  PubMed Central  PubMed  Google Scholar 

  • Karlsson JO, Toner M (1996) Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17:243–256

    Article  CAS  PubMed  Google Scholar 

  • Klimaszewska K, Ward C, Cheliak WM (1992) Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix× eurolepis) and black spruce (Picea mariana). J Exp Bot 43:73–79

    Article  CAS  Google Scholar 

  • Krajňáková J, Bertolini A, Gömöry D, Vianello A, Häggman H (2013) Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic cell lines. In Vitro Cell Dev Biol Plant 49:560–571

    Article  Google Scholar 

  • Krens FA, Verhoeven HA, van Tunen AJ, Hall RD (1998) The use of an automated cell tracking system to identify specific cell types competent for regeneration and transformation. In Vitro Cell Dev Biol Plant 34:81–86

    Article  Google Scholar 

  • Kristensen MMH, Find JI, Floto F, Moller JD, Norgaard JV, Krogstrup P (1994) The origin and development of somatic embryos following cryopreservation of an embryogenic suspension culture of Picea sitchensis. Protoplasma 182:65–70

    Article  Google Scholar 

  • Lainé E, Bade P, David A (1992) Recovery of plants from cryopreserved embryogenic cell suspensions of Pinus caribaca. Plant Cell Rep 11:295–298

    PubMed  Google Scholar 

  • Lambardi M, Ozudogru EA, Benelli C (2008) Cryopreservation of embryogenic cultures. In: Reed BM (ed) Plant cryopreservation—a practical guide. Springer Science and Business Media, New York, pp 177–210

    Chapter  Google Scholar 

  • Malpique R, Katsen-Globa A, Carrondo MJT, Zimmermann H, Alves PM (2007) Cryopreservation in micro-volumes: impact upon caco-2 colon adenocarcinoma cell proliferation and differentiation. Biotechnol Bioeng 98:155–166

    Article  CAS  PubMed  Google Scholar 

  • Marum L, Estêvão C, Oliveira MM, Amâncio S, Rodrigues L, Miguel C (2004) Recovery of cryopreserved embryogenic cultures of maritime pine—effect of cryoprotectant and suspension density. CryoLetters 25:363–374

    CAS  PubMed  Google Scholar 

  • Mustafa NR, de Winter W, van Iren F, Verpoorte R (2011) Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc 6:715–742

    Article  CAS  PubMed  Google Scholar 

  • Nørgaard JV, Duran V, Johnsen Ø, Krogstrup P, Baldursson S, Von Arnold S (1993) Variations in cryotolerance of embryogenic Picea abies cell lines and the association to genetic, morphological, and physiological factors. Can J For Res 23:2560–2567

    Article  Google Scholar 

  • Panis B, Lambardi M (2006) Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. United Nations Food and Agriculture Organization (FAO), Rome, pp 61–78

    Google Scholar 

  • Pérez RM (2000) Cryostorage of citrus embryogenic cultures. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 6. Kluwer Academic Publishers, Dordrecht, pp 687–705

    Chapter  Google Scholar 

  • Quatrano RS (1968) Freeze-preservation of cultured flax cells utilizing DMSO. Plant Physiol 43:2057–2061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at light pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salaj T, Panis B, Swennen R, Salaj J (2007) Cryopreservation of embryogenic tissues of Pinus nigra Arn. by a slow freezing method. CryoLetters 28:69–76

    CAS  PubMed  Google Scholar 

  • Salaj T, Matušíková I, Panis B, Swennen R, Salaj J (2010) Recovery and characterization of hybrid firs (Abies alba × A. cephalonica, Abies alba × A. numidica) embryogenic tissues after cryopreservation. CryoLetters 31:206–217

    CAS  PubMed  Google Scholar 

  • Salaj T, Matušíková I, Fráterová L, Piršelová B, Salaj J (2011) Regrowth of embryogenic tissues of Pinus nigra following cryopreservation. Plant Cell Tissue Organ Cult 106:55–61

    Article  Google Scholar 

  • Santos ALW, Silveira V, Steiner N, Vidor M, Guerra MP (2002) Somatic embryogenesis in Paraná pine (Araucaria angustifolia (Bert.) O. Kuntze). Braz Arch Biol Technol 45:97–106

    Article  Google Scholar 

  • Santos ALW, Steiner N, Guerra MP, Zoglauer K, Moerschbacher BM (2008) Somatic embryogenesis in Araucaria angustifolia. Biol Plant 52:195–199

    Article  Google Scholar 

  • Schlögl PS, Santos ALW, Vieira LN, Floh EIS, Guerra MP (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tissue Org Cult 108:173–180

    Article  Google Scholar 

  • Somleva MN, Schmidt EDL, de Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726

    Article  CAS  Google Scholar 

  • Stefenon VM, Steiner N, Guerra MP, Nodari RO (2009) Integrating approaches towards the conservation of forest genetic resources: a case study of Araucaria angustifolia. Biodivers Conserv 18:2433–2448

    Article  Google Scholar 

  • Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh EIS (2012) A gymnosperm homolog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tissue Org Cult 109:41–50

    Article  CAS  Google Scholar 

  • Steiner N, Farias-Soares FL, Schmidt EC, Pereira MLT, Scheid B, Rogge-Renner GD, Bouzon ZL, Schmidt D, Maldonado SB, Guerra MP (2015) Toward establishing a morphological and ultrastructural characterization of proembryogenic masses and early somatic embryos of Araucaria angustifolia (Bert.) O. Kuntze. Protoplasma. doi:10.1007/s00709-015-0827-0

    PubMed  Google Scholar 

  • Tahtamouni RW, Shibli RA (1999) Preservation at low temperature and cryopreservation in wild pear (Pyrus syriaca). Adv Hortic Sci 13:156–160

    Google Scholar 

  • Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, van Kammen A, de Vries SC (1994) Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta 194:565–572

    Article  CAS  Google Scholar 

  • Uchendu EE, Reed BM (2008) A comparative study of three cryopreservation protocols for effective storage of in vitro grown mint (Mentha spp.). CryoLetters 29:181–188

    PubMed  Google Scholar 

  • Vieira LN, Santa-Catarina C, Fraga HPF, Santos ALW, Steinmacher DA, Schlögl PS, Silveira V, Steiner N, Floh EIS, Guerra MP (2012) Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission. Plant Sci 195:80–87

    Article  CAS  Google Scholar 

  • Volk GM, Caspersen AM (2007) Plasmolysis and recovery of different cell types in cryoprotected shoot tips of Mentha× piperita. Protoplasma 231:215–226

    Article  PubMed  Google Scholar 

  • Volk GM, Walters C (2006) Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 52:48–61

    Article  CAS  PubMed  Google Scholar 

  • Wen B, Cai C, Wang R, Song S, Song J (2012) Cytological and physiological changes in recalcitrant Chinese fan palm (Livistona chinensis) embryos during cryopreservation. Protoplasma 249:323–335

    Article  CAS  PubMed  Google Scholar 

  • Zoglauer K, Behrendt U, Rahmat A, Ross H, Taryono (2003) Somatic embryogenesis—the gate to biotechnology in conifers. In: Laimer M, Rücker W (eds) Plant tissue culture 100 years since Gottlieb Haberlandt. Springer Verlag Wien, New York, pp 175–202

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 478393/2013-0, and 306126/2013-3), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo a Pesquisa e Inovação do Estado de Santa Catarina (FAPESC, Proc. 3770-2012, 2780/2012-4, and 14848/2011-2). The authors are grateful to Dr. Lirio Luiz Dal Vesco, Dr. Marisa Santos and Dr. Rubens Onofre Nodari for all contributions that improved the manuscript quality.

Author contribution statement

Conceived and designed the experiments: HPFF, LNV and MPG; Performed the experiments: HPFF, LNV, CCP, JMS, KGA; Performed the transmission electron microscopy analysis: HPFF, LNV and EMO; Contributed reagents/materials/analysis tools: MPG; Wrote the paper: HPFF, LNV and MPG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel P. Guerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraga, H.P.F., Vieira, L.N., Puttkammer, C.C. et al. High-efficiency cryopreservation of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures: ultrastructural characterization and morpho-physiological features. Plant Cell Tiss Organ Cult 124, 307–318 (2016). https://doi.org/10.1007/s11240-015-0895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0895-z

Keywords

Navigation