Skip to main content

Cryopreservation of Embryogenic Cultures of Conifers

  • Chapter
Somatic Embryogenesis in Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 67))

Abstract

The cryopreservation methodology, currently used for plant material, originates from the research done on animal cells and tissues. The epoch-making finding in cryobiology was that made by Polge et al. (1949), who demonstrated the ability of fowl spermatozoa to survive freezing at −79°C in 10–20% glycerol for up to ten weeks. Other classical studies on mammals are those of Lovelock and Bishop (1959) and Mazur (1963). Lovelock and Bishop (1959) investigated the effectiveness of cryoprotectants in modulating the rise in salt concentration during freezing, and Mazur (1963) focused on the effect of cooling rate and the likelihood of intracellular freezing. Cryopreservation studies on plant material started in the 1960’s when Sakai (1960, 1965) investigated the cryotolerance of twigs of woody plants. The woody plants investigated for cryopreservation studies in the 1970’s and 1980’s were thein vivo andin vitro material of fruit trees, such asMalus spp (Sakai & Nishiyama 1978, Katano et al. 1983, Kuo & Lineberger 1985, Tyler & Stushnoff 1988) andCitrus (Marin & Duran-Vila 1988), other woody perennials such asRubus spp. (Reed 1988) andVaccinium spp. (Reed 1989),Coffea arabica (Bertrand-Desbrunais et al. 1988),Morus bombycis (Yakuwa & Oka 1988) and the moncotyledons, includingElaesis guinensis (Grout et al. 1983) andPhoenix dactylifera (Tisserat et al. 1981). The first reports on cryopreservation of conifers were published in the late 1980’s, the target species beingPicea abies,Pinus taeda (Gupta et al. 1987) andPicea glauca (Kartha et al. 1988). During the 1990’s the number of target species, both deciduous woody plants (for review see Bajaj 1995, Ryynänen 1999) and conifers, has increased rapidly, partly, due to the increased emphasis on cryopreservation technology in gene conservation, biodiversity, and in maintaining juvenility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anon. 1992. Gene Resources of Forest Trees. Nordiske Seminar-og Arbeitsrapporter 1992: 580. Nordic Council of Ministers, Copenhagen.

    Google Scholar 

  • Aronen, T., Krajnakova, J., Häggman, H. & L. Ryynänen, 1999. Genetic fidelity of cryopreserved embryo-genic cultures of open-pollinatedAbies cephalonica. Plant Sci. 142: 163–172.

    Article  CAS  Google Scholar 

  • Ashwood-Smith, M. J. & G. N. Friedmann, 1979. Lethal and chromosomal effects of freezing, thawing, storage time and X-irradiation on mammalian cells preserved at-196°C in dimethylsulfoxide. Cryobiology 16: 132–140.

    Article  PubMed  CAS  Google Scholar 

  • Attree, S. M., Dunstan, D. I. & L. C. Fowke, 1989. Initiation of embryogenic callus and suspension cultures, and improved embryo regeneration from protoplasts, of white spruce(Piceaglauca). Can. J. Bot. 67: 1790–1795.

    Google Scholar 

  • Attree, S. M. & L. C. Fowke, 1993. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant CellTiss. Org. Cult. 35: 1–35.

    CAS  Google Scholar 

  • Attree, S. M., Pomeroy, M. K. & L. C. Fowke, 1995. Development of white spruce(Piceaglauca (Moench. ) Voss. ) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J. Exp. Bot. 46: 433–439.

    Google Scholar 

  • Bajaj, Y. P. S. 1995. Cryopreservation of somatic embryos. In: Y. P. S. Bajaj (ed. ). Biotechnology in Agriculture and Forestry. Vol. 30. Somatic Embryogenesis and Synthetic Seed, Springer-Verlag, Heidelberg, pp. 221–229.

    Google Scholar 

  • Becwar, M. R. & G. S. Pullman, 1995. Somatic embryogenesis in loblolly pine(Pinustaeda L. ). In: S. M. Jain, P. K. Gupta & R. J. Newton (eds). Somatic embryogenesis of woody plants. Vol. 3. Dordrecht, Kluwer Academic Publishers, pp. 287–301.

    Chapter  Google Scholar 

  • Bercetche, J., Galerne, M. & J. Dereuddre, 1990. Augmentation des capacités de régé nération de cals embryogènes dePicea abies (L. ) Karst après congélation dans l’azote liquide. C. R. Acad. Sci. Paris. Ser. III: 357–363.

    Google Scholar 

  • Bercetche, J. & Pâques, M. 1995. Somatic embryogenesis in maritime pine(Pinuspinaster). In: S. M. Jain, Gupta P. K. & R. J. Newton (eds). Somatic embryogenesis of woody plants. Vol. 3: 221–242. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Bertrand-Desbrunais, A., Fabre, J., Engelmann, F., Dereuddre, J. & A. Charrier, 1988. Reprise de l’embryogenèse adventive à partir d’embryons somatiques de caféier(Coffea arabica L. ) après leur congélation dans l’azote liquide. C. R. Acad. Sci. Paris 307 ( Ser. III ): 795–801.

    Google Scholar 

  • Blakesley, D., Pask, N., Henshaw, G. G. & M. F. Fay, 1996. Biotechnology and the conservation of forest genetic resources:in vitro strategies and cryopreservation. Plant Growth Regul. 20: 11–16.

    Article  CAS  Google Scholar 

  • Bose, S. & S. K. Basu, 1977. Preliminary studies on the mitotic irregularities in onion(Alliumcepa L. ) after single and combined treatments with dimethyl sulfoxide and X-rays. Indian Biol. 9: 44–46.

    CAS  Google Scholar 

  • Boulay, M. P., Gupta, P. K., Krogstrup, P. & D. J. Durzan, 1988. Development of somatic embryos from cell suspension cultures of Norway spruce. Plant Cell Rep. 7: 134–137.

    Article  Google Scholar 

  • Carson, M. J. 1986. Advantages of clonai forestry forPinus radiata: real or imagined? New Zealand J. For. Sci. 16: 403–415.

    Google Scholar 

  • Chalupa, V. 1985. Somatic embryogenesis and plant regeneration from cultured immature and mature embryos ofPicea abies (L. ) Karst. Comm. Inst. For. Cechosloveniae 14: 57–63.

    Google Scholar 

  • Chen, T. H. H. & K. K. Kartha, 1987. Cryopreservation of woody species. In: J. M. Bonga & D. J. Durzan (eds). Cell and Tissue Culture in Forestry. Vol. 2. Specific Principles and Methods: Growth and Developments, Martinus Nijhoff Publishers, Dordrecht, pp. 305–319.

    Chapter  Google Scholar 

  • Cyr, D. R., Lazaroff, W. R., Grimes, S. M. A., Qiran, G., Bethune, T. D., Dunstan, D. I. & D. R. Roberts, 1994. Cryopreservation of interior spruce(Picea glauca engelmanni complex) embryogenic cultures. Plant Cell Rep. 13: 574–577.

    Article  Google Scholar 

  • David, A. E., Laine, E. & H. David, 1995. Somatic embryogenesis inPinus caribea. In: S. M. Jain, P. K. Gupta, & R. J. Newton (eds). Somatic embryogenesis of woody plants Vol. 3. Kluwer Academic Publishers, Dordrecht, pp. 145–183.

    Chapter  Google Scholar 

  • De Boucaud, M. T., Brison, M. & P. Negrier, 1994. Cryopreservation of walnut somatic embryos. CryoLetters 15: 151–160.

    Google Scholar 

  • De Verno, L. L., Charest, P. J. & L. Bonen, 1994. Mitochondrial DNA variation in somatic embryogenic cultures ofLarix. Theor. Appl. Genet. 88: 727–732.

    Google Scholar 

  • Dvorak, W. S. 1990. CAMCORE: industry and governments’ efforts to conserve threatened forest species in Guatemala, Honduras and Mexico. For. Ecol. Manag. 35: 151–157.

    Article  Google Scholar 

  • Eastman, P. A. K., Webster, F. B., Pitel, J. A. & D. R. Roberts, 1991. Evaluation of somaclonal variation during somatic embryogenesis of interior spruce(Piceaengelmannii complex) using culture morphology and isozyme analysis. Plant Cell Rep. 10: 425–430.

    Article  Google Scholar 

  • Engelmann, F. 1991. In vitro conservation of tropical plant germplasm - a review. Euphytica 57: 227–243.

    Google Scholar 

  • Fabre, J. & J. Dereuddre, 1990. Encapsulation-dehydration: A new approach to cryopreservationoffolanum shoot tips. Cryo-Letters 11: 413–426.

    Google Scholar 

  • Find, J. I., Floto, F., Krogstrup, P., Moller, J. D., Norgaard, J. V. & M. M. H. Kristensen, 1993. Cryopreservation of an embryogenic suspension cultureof Picea sitchensis and subsequent plant regeneration, Scand. J. For. Res. 8: 156–162.

    Google Scholar 

  • Find, J. I., Kristensen, M. M. H., Norgaard, J. V. & P. Krogstrup, 1998. Effect of culture period and cell density on regrowth following cryopreservation of embryogenic suspension cultures of Norway spruce andSitka spruce. Plant CellTiss. Org. Cult. 53: 27–33.

    Google Scholar 

  • Finkle, B. J., Zavala, M. E. & J. M. Ulrich, 1985. Cryoprotective compounds in the viable freezing of plant tissues. In: K. K. Kartha (ed. ). Cryopreservation of Plant Cells and Organs. CRC Press, Boca Raton, Florida, pp. 75–113.

    Google Scholar 

  • Fourré, J. -L., André, P., Casimiro, F., Medjandi, G. & M. Mestdagh, 1991. Invitro germination of encapsulatedPicea abies (L. ) Karst. somatic embryos: preliminary results. Med. Fac. Landbouww. Rijkksuniv. Gent. 56: 1449–1451.

    Google Scholar 

  • Fourré, J. -L., Berger, P., Niquet, L. & P. André, 1997. Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic,cytogenetic and molecular approaches. Theor. Appl. Genet. 94: 159–169.

    Google Scholar 

  • Friend, C. & H. A. Freedman, 1978. Effects and possible mechanism of action of dimethylsulfoxide on friend cell differentiation. Biochem. Pharm 27: 1309–1313.

    Google Scholar 

  • Galerne, M., Bercetche, J. & J. Dereuddre, 1992. Cryoconservation de cals embryogénes d’Epicea(Picea ables (L. ) Karst. ): effect de différents facteurs sur la réactivation des cals et la production d’embryons puis de plantules. Bull. Soc. Bot. Fr. 139, Lettres bot. (4/5): 331–344.

    Google Scholar 

  • Galerne, M. & J. Dereuddre, 1988. Survie de cals embryogenes d’épicéa après congélation a -196°C. Ann. AFOCEL 1987: 8–33.

    Google Scholar 

  • Grossnickle, S. C., Cyr, D. & D. R. Polonenko, 1996. Somaticembryogenesis tissue culture for the propagation of conifer seedlings: A technology comes of age, Tree Planters’s Notes 47: 48–57.

    Google Scholar 

  • Grout, B. W. W., Shelton, K. & H. W. Pritchard, 1983. Orthodox behaviour of oil palm seed and cryopreservation of the excised embryo for genetic conservation. Ann. Bot. 52: 381–384.

    Google Scholar 

  • Gupta, P. K. & D. J. Durzan, 1987. Biotechnology of somaticpolyembryogenesis and plantlet regeneration in loblolly pine. Bio/Technology 5: 147–151.

    Article  Google Scholar 

  • Gupta, P. K., Durzan, D. J. & B. J. Finkle, 1987. Somatic polyembryogenesis in embryogenic cell masses ofPicea abies (Norway spruce) andPinus taeda (loblolly pine) after thawing from liquid nitrogen. Can. J. For. Res. 17: 1130–1134.

    Google Scholar 

  • Gupta, P. K., Pullman, G., Timmis, R., Kreitinger, M., Carlson, W. C., Grob, J. & E. Welty, 1993. Forestry in the 21’ century. The biotechnology of somatic embryogenesis. Bio/Technology 11: 454–459.

    Google Scholar 

  • Gupta, P. K., Timmis, R., Timmis, K. A., Carlson, W. C. & E. D. E. Welty, 1995. Somatic embryogenesis in Douglas-fir(Psudotsugamenziesii). In: S. M. Jain, P. K. Gupta, & R. J. Newton (eds). Somatic embryogenesis of woody plants. Vol. 3. Kluwer Academic Publishers, Dordrecht, pp. 303–313.

    Chapter  Google Scholar 

  • Hannrup, B. & I. Ekberg, 1998. Age-age correlations for tracheid length and wood densityofPinus sylvestris. Can. J. For. Res. 28: 1373–1379.

    Google Scholar 

  • Hakman, I., Fowke, L. C., von Arnold, S. & T. Eriksson, 1985. The development of somatic embryos in tissue cultures initiated from immature embryos ofPicea abies ( Norway spruce ). Plant Sci. 38: 53–59.

    Google Scholar 

  • Hargreaves, C. L. & L. J. Grace, 1998. Factors influencing regrwth of cryopreserved embryogenic tissue ofPinus radiata D. Don. In: Abstracts in the Eight Meeting of the Conifer Biotechnology Working Group June 7–11, 1998. Rutgers University NJ.

    Google Scholar 

  • Hargreaves, C. L. & D. R. Smith, 1992. CryopreservationofPinus radiata embryogenic tissue. Proc. Int. Plant Prop. Soc. 42: 327–333.

    Google Scholar 

  • Hargreaves, C. L. & D. R. Smith, 1994. Techniques used for cryopreservationofPinus radiata embryogenic tissue. Cryobiology 31: 578.

    Google Scholar 

  • Hervâs, J. P. & G. Giménez-Martin, 1973. Dimethyl sulfophoxide effect on division cells. Experimentia 29: 1540–1542.

    Article  Google Scholar 

  • Högberg, K. -A., Ekberg, I., Norell, L. & S. von Arnold, 1998. Integration of somaticembryogenesis in a tree breeding programme: a case study withPicea abies. Can. J. For. Res. 28: 1536–1545.

    Article  Google Scholar 

  • Ihrke, C. A. & W. E. Kronstad, 1975. Genetic recombination in maize as affected byethylenediaminetetraacetic acid and dimethyl sulfoxide. Crop Sci. 15: 429–431.

    Article  CAS  Google Scholar 

  • Isabel, N., Tremblay, L., Michaud, M., Tremblay, F. M. & J. Bousquet, 1993. RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populationsofPicea mariana (Mill. ) B. S. P. Theor. Appl. Genet. 86: 81–87.

    Google Scholar 

  • Jain. S. M. 1996. Somaclonal variation and mutagenesis for crop improvement. In: S. Immonen (ed. ). Maatalouden tutkimuskeskuksenjulkaisuja,–From Cells to Productive Plants, Vol. 18. MTTK, Jokioinen, Finland, pp. 122–133.

    Google Scholar 

  • Jain, S. M. Brar, D. S. & B. S. Ahloowalia, 1998. Somaclonal Variation and Induced Mutations in Crop Improvement. Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Jain, S. M., Gupta, P. K. & R. J. Newton, 1995. Somatic embryogenesis of woody plants. Vol. 3. Gymnosperms. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Jain, S. M., Gupta, P. K. & R. J. Newton, 1999. Somatic embryogenesis in woody plants. Vol. 4. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Kartha, K. K. 1985. Meristem culture and germplasm preservation. In K. K. Kartha (ed. ). Cryopreservation of Plant Cells and Organs. CRC Press, Inc., Boca Raton, Florida, pp. 115–134.

    Google Scholar 

  • Kartha, K., Fowke. L., Leung, N., Caswell, K. & 1. Hakman, 1988. Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce(Picea glauca). J. Plant Physiol. 132: 529–539.

    CAS  Google Scholar 

  • Katano, M., Ishihara, A. & A. Sakai, 1983. Survival of dormant apple shoot tips after immersion in liquid nitrogen. HortScience 18: 707–708.

    Google Scholar 

  • Klimaszewska, K. 1995. Somatic embryogenesis inPicea mariana (Mill. ). In: S. M. Jain, P. K. Gupta & R. J. Newton (eds). Somatic embryogenesis of woody plants, Vol. 3. Kluwer Academic Publishers, Dordrecht, pp. 67–79.

    Chapter  Google Scholar 

  • Klimaszewska, K., Ward, C. & W. M. Cheliak, 1992. Cryopreservation and plant regeneration from embryo-genic cultures of larch(Larixx eurolepis) and black spruce(Picea mariana). J. Exp. Bot. 43: 73–79.

    Google Scholar 

  • Kristensen, M. H. H., Find, J. I., Floto, F., Moller, J. D., Norgaard, J. V. & P. Krogstrup, 1994. The origin and development of somatic embryos following cryopreservation of an embryogenic suspension cultureolPicea sitchensis. Protoplasma 182: 65–70.

    Article  Google Scholar 

  • Kuo, C. -C. & R. Lineberger, 1985. Survival ofin vitro cultured tissue of ‘Jonathan’ apples exposed to -196°C. HortScience 20: 764–767.

    Google Scholar 

  • Lainé, E., Bade, B. & A. David, 1992. Recovery of plants from cryopreserved embryogenic cell suspensions ofPinus caribea. Plant Cell Rep. 11: 295–298.

    Google Scholar 

  • Lelu, M. -A. 1988. Variations morphologiques et génétiques chezPicea abies obtenues après embryogenèse somatique. Ann. AFOCEL 1987: 35–47.

    Google Scholar 

  • Lester, D. T. 1973. The role of interspesific hybridization in forest tree breeding. In: Proceedings of the 14th Meeting of the Canadian Tree Improvement Association, Part 2, Fredericton, New Brunswick, August 28–30, 1973, pp. 85–97.

    Google Scholar 

  • Libby, W. J. 1990. Genetic conservation of radiata pine and coast redwood. For. Ecol. Manag. 35: 109–120.

    Article  Google Scholar 

  • Lovelock, J. E. & M. W. H. Bishop, 1959. Prevention of freezing damage to living cells bydimethyl sulfoxide. Nature 183: 1394–1395.

    Article  PubMed  CAS  Google Scholar 

  • Lulsdorf, M. M., Tautorus, T. T., Kickio, S. I., Bethune, T. D. & D. I. Dunstan, 1993. Germination of encapsulated embryos of interior spruce(Piceaglauca engelmannii complex) and black spruce(Piceamariana Mill. ). Plant Cell Rep. 12: 385–389.

    Google Scholar 

  • Marin, M. L. & N. Duran-Vila, 1988. Survival of somatic embryos and recovery of plants of sweet orange(Citrus sinensis (L. ) Osb. ) after immersion in liquid nitrogen. Plant CellTiss. Org. Cult. 14: 51–57.

    Google Scholar 

  • Mazur, P. 1963. Kinetics of water loss from cells atsuperzero temperatures and the likelihood of intracellular freezing. J. Gen. Physiol. 47: 347–369.

    Google Scholar 

  • Mikola, J. 1985. Methods used for the genetic evaluation of tree breeding material in Finland. InM. A. Tigerstedt, P. Puttonen, & V. Koski (eds). Crop Physiology of Forest Trees. Helsinki University Press, pp. 225–232.

    Google Scholar 

  • Mo, L. H. & S. von Arnold, 1991. Origin and development of embryogenic cultures from seedlings of Norway spruce(Picea abies). J. Plant Physiol. 138: 223–230.

    Article  Google Scholar 

  • Mo, L. H., von Arnold, S. & U. Lagercrantz, 1989. Morphogenic and genetic stability in long term embryo-genic cultures and somatic embryos of Norway spruce(Picea abies). Plant Cell Rep. 8: 375–378.

    Article  Google Scholar 

  • Niino, T. & A. Sakai, 1992. Cryopreservation of alginate-coatedinvitro-grown shoot tips of apple, pear and mulberry. Plant Sci. 87: 199–206.

    Article  CAS  Google Scholar 

  • Nkongolo, K. K. & K. Klimazewska, 1995. Cytological and molecular relationships betweenLarixdecidua,L. leptolepis andLarix X eurolepis: identification of species-specific chromosomes and synchronization of mitotic cells. Theor. Appl. Genet. 90: 827–834.

    Google Scholar 

  • Norgaard, J. V., Baldurson, S. & P. Krogstrup, 1993a. Genotypic differences in the ability of embryogenicAbies nordmanniana cultures to survive cryopreservation. Silvae Genet. 42: 93–97.

    Google Scholar 

  • Norgaard, J. V., Duran, V., Johnsen, 0., Krogstrup, P., Baldursson, S. & S. von Arnold, 1993b. Variations in cryotolerance of embryogenicPicea abies cell lines and the association to genetic, morphological, and physiological factors. Can.J. For. Res. 23: 2560–2567.

    Google Scholar 

  • O’Brien, E. W., Smith, D. R., Gardner, R. C. & B. G. Murray, 1996. Flow cytometric determination of genome size inPinus. Plant Sci. 115: 91–99.

    Article  Google Scholar 

  • Pâques, M. & L. Harvengt, 1998. Somatic embryogenesis from old conifers: a way to speed up the bestlones availability for fibre-culture. In: Abstracts in COST “Eurosilva” Working Group I: Growth andDeveloment. Workshop: Advances on somaticembryogenesis in forest trees. December 3–4, 1998. Orléans, France.

    Google Scholar 

  • Park, Y. S., Barrett, J. D. & J. M. Bonga, 1998. Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved cloneslnvitro Cell. Dev. Biol. - Plant 34: 231–239.

    Google Scholar 

  • Phillips, R. L., Kaeppler, S. M. & V. M. Peschke, 1990. Do we understand somaclonal variation? In: H. J. J. Nijkamp, L. H. W. van der Plas, & J. van Aartrjik (eds). Progress in Plant Cellular and Molecular Biology. Kluwer Academic Publishers, Dordrecht, pp. 91–101.

    Google Scholar 

  • Plessis, P., Leddet, C., Collas, A. & J. Dereuddre, 1993. Cryopreservation ofVitis vinifera L. cv Chardonnay shoot tips by encapsulation-dehydration: Effects ofpretreatment, cooling and postculture conditions. CryoLetters 14: 309–320.

    Google Scholar 

  • Poissonier, M., Monod, V., Paques, M. & J. Dereuddre, 1992. Cryoconservation dans l’azote liquide d’apexd’Eucalyptus gunnii (Hook. F. ) cultivein vitro enrobage et desydration. Ann. AFOCEL pp. 5–23.

    Google Scholar 

  • Polge, C., Smith, A. U. & A. S. Parkes, 1949. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164: 666.

    Article  PubMed  CAS  Google Scholar 

  • Reed, B. M. 1988. Cold acclimation as a method to improve survival of cryopreservedRubus meristemsCryoLetters 9: 166–171.

    Google Scholar 

  • Reed, B. M. 1989. The effect of cold hardening and cooling rate on the survival of apical meristemsotVaccinium species frozen in liquid nitrogen. Cryo-Letters 10: 315–322.

    Google Scholar 

  • Reed, B. M. 1990. Survival ofin vitro-grown apical meristems-ofPyrus following cryopreservation. HortScience 25: 111–113.

    Google Scholar 

  • Reed, B. M. & X. Yu, 1995. Cryopreservation ofin vitro-grown gooseberry and currant meristems. CryoLetters 16: 131–136.

    Google Scholar 

  • Reinhoud, P. J., Schrijnemakers, E. W. M., van Iren, F. & J. W. Kijne, 1995. Vitrification and a heat-shock treatment improve cryopreservation of tobacco cell suspensions compared to two-step freezing. Plant CellTiss. Org. Cult. 42: 261–267.

    Google Scholar 

  • Ryynänen, L. 1996. Cold hardening and slow cooling: tools for successful cryopreservation and recovery obivitro shoot tips of silver birch. Can. J. For. Res. 26: 2015–2022.

    Google Scholar 

  • Ryynänen, L. 1999. Cryopreservation of buds andin vitro shoot tips ofBetula pendula. Thesis. Finn. For. Res. Inst., Res. Papers 728.

    Google Scholar 

  • Sakai, A. 1960. Survival of the twigs of woody plants at-195 C. Nature 185: 393–394.

    Article  Google Scholar 

  • Sakai, A. 1965. Survival of plant tissue at super-low temperatures III. Relation betweeneffective prefreezing temperatures and the degree of frost hardiness. Plant Physiol. 40: 882–887.

    Google Scholar 

  • Sakai, A. 1995. Cryopreservation for germplasm collection in woody plants. In: S. Wain, P. K. Gupta & R. J. Newton (eds). Somatic embryogenesis of woody plants, Vol. 1. Kluwer Academic Publishers, Dordrecht, pp. 293–315.

    Google Scholar 

  • Sakai, A. & S. Kobayashi, 1990. A simple and efficient procedure for cryopreservation ofnucellar cells of navel orange by vitrification. Cryobiology 27: 657.

    Google Scholar 

  • Sakai, A., Kobayashi, S. & Oiyama, I. 1990. Cryopreservation ofnucellar cells of navel orange(Citrus sinensis Osb. var.brasiliensis Tanaka) by vitrification. Plant Cell Rep. 9: 30–33.

    Article  Google Scholar 

  • Salajova, T. & J. Salaj, 1992. Somatic embryogenesis in european black pine(Pinusnigra Arn. ). Biol. Plant. 4: 213–218.

    Google Scholar 

  • Sarvas, R. 1964. Havupuut. Werner Söderström Oy, Porvoo, pp. 135–186.

    Google Scholar 

  • Scottez, C., Chevreau, E., Godard, N., Arnaud, Y., Duron, M. & J. Dereuddre, 1992. Cryopreservation of cold-acclimated shoot tips of pearin vitro cultures after encapsulation-dehydration. Cryobiology 29: 691–700.

    Article  Google Scholar 

  • Singh, H. 1978. Embryology of gymnosperms. Gebruder Borntraeger, Berlin-Stuttgart.

    Google Scholar 

  • Smith, D. R., Warr, A., Grace, L., Walter, C. & C. Hargreaves, 1994. Somatic embryogenesis joins the plantation forestry revolution in New Zealand. In: Proceedings of TAPPI 1994 Biological Sciences Symposiumpp. 19–24.

    Google Scholar 

  • Sugawara, Y. & Sakai, A. 1974. Survival of suspension-cultured sycamore cells cooled to the temperature of liquid nitrogen. Plant Physiol. 54: 722–724.

    Article  PubMed  CAS  Google Scholar 

  • Tisserat, B., Ulrich, J. M. & B. J. Finkle, 1981. Cryogenic preservation and regeneration of date palm tissue. HortScience 16: 47–48.

    Google Scholar 

  • Tyler, N. & C. Stushnoff, 1988. Dehydration of dormant apple buds at different stages of cold acclimation to induce cryopreservability in different cultivars. Can. J. Plant Sci. 68: 1169–1176.

    Google Scholar 

  • Ulrich, J. M., Finkle, B. J., Moore, P. H. & H. Ginoza, 1979. Effect of a mixture ofcryoprotectants in attaining liquid nitrogen survival of callus cultures of a tropical plant. Cryobiology 16: 550–556.

    Article  PubMed  CAS  Google Scholar 

  • Villalobos, V. & F. Engelmann, 1995.Ex situ conservation of plant germplasm using biotechnology. J. Microbiol. & Biotechnol. 11: 375–382.

    Google Scholar 

  • von Arnold, S., Egertsdotter, U., Ekberg, I., Gupta, P., Mo, H. & J. Nergaard, 1995. Somatic embryogenesis in Norway spruce(Picea abies). In: S. M. Jain, P. K. Gupta & R. J. Newton (eds). Somatic Embryogenesis in Woody Plants. Vol 3. Gymnosperms. Kluwer Academic Publishers, Dordrecht, pp. 17–36.

    Chapter  Google Scholar 

  • Weising, K., Nybom, H., Wolff, K. & W. Meyer, 1995. DNA Fingerprinting in Plants and Fungi, CRC Press, Boca Raton. Florida.

    Google Scholar 

  • Westcott, R. J. 1994. Production of embryogenic callus fromnonembryonic explants of Norway spruce(Picea abies (L. ) Karst. ) Plant Cell Rep. 14: 47–49.

    CAS  Google Scholar 

  • Wilhelmsson, L. & B. Andersson, 1993. Breeding of Scots pine(Pious sylvestris) andlodgepole pine(Pious contorta ssp.latifolia). In: S. J. Lee (ed. ). Progeny Testing and Breeding Strategies. Proceeding of the Nordic Group of Tree Breeding, October 1993, Edinburgh, Forestry Commison, pp. 5–15.

    Google Scholar 

  • Wilson, B. C. 1990. Gene-pool reserves of Douglas fir. For. Ecol. Manag. 35: 121–130.

    Google Scholar 

  • Withers, L. A. 1985. Cryopreservation of cultured plant cells andprotoplasts. In: K. K Kartha (ed. ). Cryopreservation of Plant Cells and Organs. CRC Press, Inc., Boca Raton, Florida, pp. 243–266.

    Google Scholar 

  • Withers, L. A. & H. E. Street, 1977. Freeze preservation of cultured plant cells III. The pregrowth phase. Physiol. Plant. 39: 171–178.

    Google Scholar 

  • Yakuwa, H. & S. Oka, 1988. Plant regeneration throughmeristem culture from vegetative buds of mulberry(Morus bombycis Koidz. ) stored in liquid nitrogen. Ann. Bot. 62: 79–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Häggman, H.M., Aronen, T.S., Ryynänen, L.A. (2000). Cryopreservation of Embryogenic Cultures of Conifers. In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3030-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3030-3_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5508-8

  • Online ISBN: 978-94-017-3030-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics