Skip to main content
Log in

Effects of n-butanol on barley microspore embryogenesis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Doubled haploid (DH) production is an efficient tool in barley breeding, but efficiency of DH methods is not consistent. Hence, the aim of this study was to study the effect of n-butanol application on DH barley plant production efficiency. Five elite cultivars of barley and thirteen breeding crosses with different microspore embryogenesis capacities were selected for n-butanol application in anther and isolated microspore cultures. Application of 0.1 % n-butanol after a mannitol stress treatment in anther culture significantly increased the number of embryos (up to almost twice) and green plants (from 1.7 to 3 times) in three low-responding cultivars: Albacete, Astoria and Majestic. No significant differences on microspore embryogenesis efficiency were observed in medium and high responding cultivars. The application of n-butanol treatment to isolated microspores from cold treated spikes in thirteen spring breeding crosses with a low or very low androgenetic response did not have a significant effect on the overall number of green plants. Nevertheless, an increase in the number of green plants was observed when 0.2 % n-butanol was applied in four out of seven low-responding crosses. Therefore, application of n-butanol could be routinely applied to anther cultures using mannitol treatment, in low-responding material. However, further studies are needed to determine optimal conditions in protocols using cold treatment and isolated microspore cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdrakhamanova A, Wang QY, Khokhlova L, Nick P (2003) Is microtubule assembly a trigger for cold acclimation? Plant Cell Physiol 44:676–686

    Article  CAS  PubMed  Google Scholar 

  • Alsop BP, Farre A, Wenzel P, Wang JM, Zhou MX, Romagosa I, Kilian A, Steffenson BJ (2011) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed 27:77–92

    Article  Google Scholar 

  • Asakaviciute R (2008) Androgenesis in anther culture of Lithuanian spring barley (Hordeum vulgare L.) and Potato (Solanum tuberosum L.) cultivars. Turk J Biol 32:155–160

    CAS  Google Scholar 

  • Baezinger PS, DePauw RM (2009) Wheat breeding: procedures and strategies. In: Caraver BF (ed) Wheat science and trade. Wiley-Blackwell, Ames

    Google Scholar 

  • Barceló P, Cabrera A, Hagel C, Lörz H (1994) Production of doubled haploid plants from tritordeum anther culture. Theor Appl Genet 87:741–745

    Article  PubMed  Google Scholar 

  • Barnabás B, Pfahler PL, Kovács G (1991) Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat Triticum aestivum L. Theor Appl Genet 81:675–678

    Article  PubMed  Google Scholar 

  • Broughton S (2011) The application of n-butanol improves embryo and green plant production in anther culture of Australian wheat (Triticum aestivum L.) genotypes. Crop Pasture Sci 62:813–822

    Article  CAS  Google Scholar 

  • Castillo AM, Vallés MP, Cistué L (2000) Comparison of anther and isolated microspore cultures in barley. Effects of culture density and regeneration medium. Euphytica 113:1–8

    Article  CAS  Google Scholar 

  • Castillo AM, Cistué L, Vallés MP, Soriano M (2009) Chromosome doubling in monocots. In: Touraev A, Forster BP, Mohan Jain S (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 329–338

    Chapter  Google Scholar 

  • Castro AJ, Gamba F, German S, Gonzalez S, Hayes PM, Pereyra S, Pérez C (2012) Quantitative trait locus analysis of spot blotch and leaf rust resistance in the BCD47× Baronesse barley mapping population. Plant Breed 131:258–266

    Article  CAS  Google Scholar 

  • Ceoloni C, Jauhar PP (2006) Chromosome engineering of the durum wheat genome: strategies and applications of potential breeding value. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement, vol 2., CerealsCRC Press/Taylor and Francis, Boca Raton, pp 27–59

    Chapter  Google Scholar 

  • Cistué L, Ramos A, Castillo AM, Romagosa I (1994) Production of a large number of double haploid plants from barley anthers pre-treated with high concentrations of mannitol. Plant Cell Rep 13:709–712

    Article  PubMed  Google Scholar 

  • Cistué L, Ramos A, Castillo AM (1999) Influence of anther pre-treatment and culture medium composition on the production of barley doubled haploids from model and low-responding cultivars. Plant Cell Tissue Org Cult 55:159–166

    Article  Google Scholar 

  • Cistué L, Vallés MP, Echávarri B, Sanz JM, Castillo AM (2003) Barley anther culture. In: Malupszynski M, Kasha KJ, Foster B (eds) Doubled haploid production in crop plants: a manual. FAO/IAEA Division, Wien, pp 29–35

    Chapter  Google Scholar 

  • Devaux P, Pickering R (2005) Haploids in the improvement of Poaceae. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, Berlin, pp 215–242

    Chapter  Google Scholar 

  • Dhonukshe P, Laxalt AM, Goedhart J, Gadella TWJ, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubas E, Wedzony M, Custers J, Kieft H, van Lammeren AAM (2011) Gametophytic development of Brassica napus pollen in vitro enables examination of cytoskeleton and nuclear movements. Protoplasma 249:369–377

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotech J 8:377–424

    Article  CAS  Google Scholar 

  • Echavarri B, Soriano M, Cistue L, Valles MP, Castillo AM (2008) Zinc sulphate improved microspore embryogenesis in barley. Plant Cell Tissue Org Cult 93:295–301

    Article  CAS  Google Scholar 

  • Ferri AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid production. Plant Cell Tissue Org Cult 104:301–309

    Article  Google Scholar 

  • Fisk SP, Cuesta-Marcos A, Cistué L, Russell J, Smith KP, Baezinger S, Bedo Z, Corey A, Filichkin T, Karsai I, Wangh R, Hayes PM (2013) FR-H3: A new QTL to assist in the development of fall-sown barley with superior low temperature tolerance. Theor Appl Genet 126:335–347. doi:10.1007/S00122-012-1982-8

    Article  PubMed  Google Scholar 

  • Földesiné Fúredi PK, Ambrus H, Barnabás B (2012) Development of cultured microspores of maize in the presence of n-butanol and 2-aminoethanol. Acta Agron Hung 60(3):183–189

    Article  Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12(8):368–375

    Article  CAS  PubMed  Google Scholar 

  • Gardiner J, Collings DA, Harper JDI, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol 44:687–696

    Article  CAS  PubMed  Google Scholar 

  • Germana MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  CAS  PubMed  Google Scholar 

  • Gervais C, Newcomb W, Simmonds DH (2000) Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brassica napus L. cv. Topas. Protoplasma 213:194–202

    Article  Google Scholar 

  • Hause G, Hause B, Van Lammeren AAM (1992) Microtubular and actin filament configurations during microspore and pollen development in Brassica napus cv. Topas. Can J Bot 70:1369–1376

    Google Scholar 

  • Hirase A, Hamada T, Itoh TJ, Shimmen T, Sonobe S (2006) n-Butanol induces depolymerization of microtubules in vivo and in vitro. Plant Cell Physiol 47:1004–1009

    Article  CAS  PubMed  Google Scholar 

  • Hunter CP (1987) European Patent Application Nr. 0245898 A2, 1-8

  • Jacquard C, Asakaviciute R, Hamalian AM, Sangwan RS, Devaux P, Clément C (2006) Barley anther culture: effects of annual cycle and spike position on microspore embryogenesis and albinism. Plant Cell Rep 25:375–381

    Article  CAS  PubMed  Google Scholar 

  • Jacquard C, Nolin F, Hécart C, Grauda D, Rashal I, Dhondt-Cordelier S, Sangwan RS, Devaux P, Mazeyrat-Gourbeyre F, Clément C (2009) Microspore embryogenesis and programmed cell death in barley: effect of copper on albinism in recalcitrant cultivars. Plant Cell Rep 28:1329–1339

    Article  CAS  PubMed  Google Scholar 

  • Jauhar PP, Xu SS, Baezinger PS (2009) Haploidy in cultivated wheats: induction and utility in basic and applied research. Crop Sci 49:737–755

    Article  Google Scholar 

  • Kasha KJ (2005) Chromosome doubling and recovery of doubled haploid plants. In: Palmer CE, Keller WA, Kasha KJ (eds) Biotechnology in agriculture and forestry. 56 Haploids in Crop improvements II. Springer, Berlin, Heidelberg, pp 123–152

    Google Scholar 

  • Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120:379–385

    Article  Google Scholar 

  • Lantos C, Weyen J, Orsini JM, Gnad H, Schlieter B, Lein V, Kontowsky S, Jacobi A, Mihály R, Broughton S, Pauk J (2013) Efficient application of in vitro anther culture for different European winter wheat (Triticum aestivum L.) breeding programmes. Plant Breed 132:149–154

    Article  Google Scholar 

  • Lazaridou TB, Lithourgidis AS, Kotzamanidis ST, Roupakias DG (2005) Anther culture response of barley genotypes to cold pretreatments and culture medium. Russ J Plant Physiol 52:696–699

    Article  CAS  Google Scholar 

  • Lu R, Wang Y, Sun Y, Shang L, Chen P, Huang J (2008) Improvement of isolated microspore culture of barley (Hordeum vulgare L.) the effect of the floret co-culture. Plant Cell Tissue Org Cult 93:21–27

    Article  Google Scholar 

  • Melchinger AE, Technow F, Dhillon BS (2011) Gene stacking strategies with doubled haploids derived from biparental crosses: theory and simulations assuming a finite number of loci. Theor Appl Genet 123:1269–1279

    Article  PubMed  Google Scholar 

  • Muñoz-Amatriaín M, Castillo AM, Chen XW, Cistué L, Vallés MP (2008) Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Mol Breed 22:119–129

    Article  Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Wu Y, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest K, Hayden MJ, Hayes PM, Horsley RD, Kleinhofs A, Moody A, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and SNP markers. Plant Genome 9:321–323

    Google Scholar 

  • Olsen FL (1991) Isolation and cultivation of embryogenic microspores from barley (Hordeum vulgare L.). Hereditas 115:255–266

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7(2):e32253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potocký M, Eliáš M, Profotová B, Novotná Z, Valentová O, Žárský V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217:122–130

    PubMed  Google Scholar 

  • Riedel C, Habekuß A, Schliephake E, Niks R, Broer I, Ordon F (2011) Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123:69–76

    Article  CAS  PubMed  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stress applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Shim YS, Kasha KJ, Simion E, Letarte J (2006) The relationship between induction of embryogenesis and chromosome doubling in microspore cultures. Protoplasma 228:79–86

    Article  CAS  PubMed  Google Scholar 

  • Soriano M, Cistué L, Vallés MP, Castillo AM (2007) Effect of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.). Plant Cell Tissue Org Cult 91:225–234

    Article  CAS  Google Scholar 

  • Soriano M, Cistué L, Castillo AM (2008) Enhanced induction of microspore embriogenesis alters n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep 27:805–811

    Article  CAS  PubMed  Google Scholar 

  • Zhao JP, Simmonds DH, Newcomb W (1996) Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv. Topas. Planta 198:433–439

    Article  CAS  Google Scholar 

  • Zur I, Dubas E, Golemiec E, Szechynska-Hebda M, Golebiowska G, Wedzony M (2009) Stress-related variation in antioxidative enzyme activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (X Triticosecale Wittm.). Plant Cell Rep 28:1279–1287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

N. H. Nielsen was a recipient of a pre-doctoral fellowship from the Danish Ministry of Science Innovation and Higher Education, Erstatningsfonden for Markfrø and Nordic Seed A/S. This work was supported by Project AGL2010-17509 from the “Plan Nacional de Recursos y Tecnologías Agroalimentarias” of Spain and by the Nordic Seed Company S/A, DLA Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, A.M., Nielsen, N.H., Jensen, A. et al. Effects of n-butanol on barley microspore embryogenesis. Plant Cell Tiss Organ Cult 117, 411–418 (2014). https://doi.org/10.1007/s11240-014-0451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0451-2

Keywords

Navigation