Skip to main content
Log in

Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon Cablin

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient transformation system for the medicinal and aromatic plant, Pogostemon cablin Benth was developed by using agropine-type Agrobacterium rhizogenes ATCC15834. Hairy roots formed directly from the cut edges of leaf explants or via callus stage 8 days after inoculation with the bacterium. The highest frequency of leaf explant transformation by Agrobacterium rhizogenes ATCC15834 was about 80% after infection for 25 days. Hairy roots grew rapidly on plant growth regulators (PGRs)-free Murashige and Skoog (MS) or 6,7-V medium and had characteristics of transformed roots such as fast growth and high lateral branching. The PCR amplification showed that rol genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. The hairy root line, PL6, grew very slowly in the first 8 days, then grew very quickly between day 8 and day 24. The optimum medium for callus induction of hairy roots consisted of 2.0 mg l−1 benzyladenine (BA) and 0.1 mg/l α-naphthaleneacetic acid (NAA); while optimum medium for adventitious shoot regeneration from these cultures consisted of 0.1 mg l−1 BA and 0.1 mg l−1 NAA. Adventitious shoots could be rooted on 1/2MS. Southern blot analysis confirmed that rol genes of TL-DNA of Ri plasmid was integrated with at least three copies into the genome of hairy roots- regenerated P. cablin plants. The results presented provide a solid foundation for production of patchouli essential oil from hairy roots or its regenerated plants and also provide possibilities for utilization of artifical polyploidization or chemical mutation of hairy roots for improving germplasm and breeding of a new cultivar of P. cablin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BA:

Benzyladenine

MS:

Murashige and Skoog

NAA:

α-naphthaleneacetic acid

Ri:

Root inducing

rol B:

Rooting locus B

rol C:

Rooting locus C

YEB:

Yeast Extract Broth

References

  • Bercetche J, Chriqui D, Adam S, David C (1987) Morphogenetic and cellular reorientation induced by Agrobacterium rhizogenes (strains 1855, 2659 and 8196) on carrot, pea and tobacco. Plant Sci 52:195–210

    Article  Google Scholar 

  • Chen SY, Hou SS, Gui YL, Xu TY (1991) In vitro transformation of cotyledons and hypocotyls of Glycyrrhiza uralensis Fisch by Agrobacterium rhizogenes. J Wuhan Bot Res 9(4):301–304

    Google Scholar 

  • Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy roots culture transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831

    Article  PubMed  CAS  Google Scholar 

  • Christensen B, Sriskandarajak S, Serek M, Muller R (2008) Transformation of Kalanchoe blossfeldiana with rol genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495

    Article  PubMed  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Frankfater CR, Dowd MK, Triplett BA (2009) Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots. Plant Cell Tiss Organ Cult 98:341–349

    Article  CAS  Google Scholar 

  • Fu CX, Jin ZP, Yan R, Wu FY, Zhao DX (2004) Establishment of Saussurea involucrata hairy roots culture and plantlet regeneration. Chin J Biotechnol 20(3):366–371

    Google Scholar 

  • Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319:422–427

    Article  CAS  Google Scholar 

  • Gangopadhyay M, Chakraborty D, Bhattacharyya S, Bhattacharya S (2010) Regeneration of transformed plants from hairy roots of Plumbago indica. Plant Cell Tiss Organ Cult 102:109–114

    Article  Google Scholar 

  • Godo T, Tsujii O, Ishikawa K, Mii M (1997) Fertile transgenic plants of Nierembergia scoparia sendmer obtained by a mikimopine type strain of Agrobacterium rhizogenes. ScientiaHorticultura 68:101–111

    CAS  Google Scholar 

  • Hasegawa Y, Tajima K, Toi N, Sugimura Y (1992) An additional constituent occurring in the oil from a patchouli cultivar. Flavour Fragr J 7:333–335

    Article  CAS  Google Scholar 

  • Huang XW, Bai L, Xu FH, Wu YJ (2008) Inhibitory activities of patchouli alcohol on neurotoxicity of β-amyloid peptide. Pharm J Chin People Liber Army 24(8):338–340

    CAS  Google Scholar 

  • Juiliard J, Pelese F, Sotta B, Maldiney R, Primard C, Jouanin BL, Pelletier G, Miginiac E (1993) TL-DNA transformation decreases ABA level. Physiol Plant 88:654–660

    Article  Google Scholar 

  • Kim HW, Cho SJ, Kim BY, Cho SI, Kim YK (2010) Pogostemon cablin as ROS scavenger in oxidant-induced cell death of human neuroglioma cells. Evidence-based Complementary Alter Med 7(2):239–247

    Article  Google Scholar 

  • Krolicka A, Szpitter A, Stawujak K, Baranski R, Gwizdek-Wisniewska A, Skrzypczak A, Kaminski M, Lojkowska E (2010) Teratomas of Drosera capensis var. alba as a source of naphthoquinone: ramentaceone. Plant Cell Tiss Organ Cult 103:285–292

    Article  CAS  Google Scholar 

  • Lin XH, He H (2005) Problem and investigation status on germplasm resources in patchouli (Pogostemon cablin (Blanco) Benth). Res Pract Chin Med 19(4):60–62

    Google Scholar 

  • Lin XH, He H, Wu LR, Zhang GF, Zhang YL (2007) In vitro culture of different explants from Pogostemon cablin. Guihaia 27(4):658–661

    CAS  Google Scholar 

  • Liu HH, Luo JP, Lai PL (1999) Studies on the anti-enteropathogenic bacteria action of herba pogostemonis extracts. J Chin Med Mater 22(8):408–410

    CAS  Google Scholar 

  • Lystvan K, Belokurova V, Sheludko Y, Ingham JL, Prykhodko V, Kishchenko O, Paton E, Kuchuk M (2010) Production of bakuchiol by in vitro systems of Psoralea drupacea Bge. Plant Cell Tiss Organ Cult 101:99–103

    Article  CAS  Google Scholar 

  • Mirsa M (1996) Regeneration of patchouli (Pogostemon cablin Benth.) plants from leaf and node callus, and evaluation after growth in the field. Plant Cell Rep 15:991–994

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O (1993) Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol 102:363–371

    PubMed  CAS  Google Scholar 

  • Pattnaik S, Subramanyam VR, Kole C (1996) Antibacterial and antifungal activity of ten essential oils in vitro. Microbios 86:237–246

    PubMed  CAS  Google Scholar 

  • Paul A, Thapaa G, Basub A, Mazumdarb P, Kalita MC, Sahooa L (2010) Rapid plant regeneration, analysis of genetic fidelity and essential aromatic oil content of micropropagated plants of Patchouli, Pogostemon cablin (Blanco) Benth.—An industrially important aromatic plant. Ind Crop Prod 32(3):366–374

    Article  CAS  Google Scholar 

  • Pharmacopeia Commission of P.R.China (2000) Pharmacopoeia of The People’s Republic of China, (English edition). Chemical Industry Press, Beijing

    Google Scholar 

  • Santos AV, Arrigoni-Blank MF, Blank AF, Tavares FF, Fernandes RPM, Jesus HCR, Alves PB (2010) Mass multiplication of Pogostemon cablin (Blanco) Benth genotypes and increase of essential oil and patchoulol yield. Ind Crop Prod 32:445–449

    Article  CAS  Google Scholar 

  • Saxena G, Banerjee S, Laiq-ur-Rahman, Verma PC, Mallavarapu GR, Kumar S (2007) Rose-scented geranium (Pelargonium sp.) generated by Agrobacterium rhizogenes mediated Ri-insertion for improved essential oil quality. Plant Cell Tiss Organ Cult 90:215–223

    Article  CAS  Google Scholar 

  • Shi HP, Kintzios S (2003) Genetic transformation of Pueraria phaseoloides with Agrobacterium rhizogenes and puerarin production in hairy roots. Plant Cell Rep 11(21):1103–1107

    Article  Google Scholar 

  • Shi HP, Li L, Pan RC (2000) Effect of RiT-DNA transformation on the levels of endogenous phytohormones in hairy roots of Cucumis sativus L. J Trop Subtrop Botany 8(1):43–48

    CAS  Google Scholar 

  • Shi HP, Liang P, Quan H (2003) Induction and culture of hairy roots in Phytolacca esculenta and its saponin production. Chin J Biotechnol 19(1):46–49

    CAS  Google Scholar 

  • Sidwa-Gorycka M, Krolicka A, Orlita A, Malinski E, Gołe biowski M, Kumirska J, Chromik A, Biskup E, Lojkowska E, Lojkowska E (2009) Hairy root cultures of Ruta graveolens L. as a rich source of coumarins and furanocoumarins. Plant Cell Tiss Org Cult 97:59–69

    Article  CAS  Google Scholar 

  • Sugimura Y, Kadotani N, Ueda Y, Shima K, Kitajima S, Furusawa T, Ikegami M (2005) Transgenic patchouli plants produced by Agrobacterium-mediated transformation. Plant Cell Tiss Organ Cult 3(82):251–257

    Article  Google Scholar 

  • Swamy MK, Balasubramanya S, Anuradha M (2010) In vitro multiplication of Pogostemon cablin Benth. through direct regeneration. African J Biotechnol 9(14):2069–2075

    Google Scholar 

  • Veliky IA, Martin SM (1970) A fermenter for plant cell suspension cultures. Can J Microbiol 16(4):223–226

    Article  PubMed  CAS  Google Scholar 

  • Wu XF, Shi HP, Tsang P, Keung E (2008) Induction and in vitro culture of hairy roots of Solanum nigrum L. var. pauciflorum Liou and its solasodine production. J Mol Cell Biol 41(3):183–191

    Google Scholar 

  • Xu HW, Zhou XF, Lu JM, Wang JJ, Wang XZ (2006) Hairy roots induced by Agrobacterium rhizogenes and production of regenerative plants in hairy root cultures in maize. Sci Chin Ser C: Life Sci 49(4):305–310

    Article  CAS  Google Scholar 

  • Yang D, Michel D, Mandin D, Andriamboavonjy H, Poitry P, Chaumont J-P, Millet-Clerc J (1996) Antifungal and antibacterial properties in vitro of three patchouli oils from different origins. Acta Bot Gallica 143(1): 29–35

    Google Scholar 

  • Zhang JM, Zhen XQ, Sun XP (1994) Plant regeneration from somatic cells of cablin patchouli (Pogostemon cablin (Blanco) Benth). Chin J Trop Crop 15(1):73–77

    Google Scholar 

  • Zhang JM, Sun XP, Zheng XQ (1997) Construction of cecropin B and D double gene expression vector and transformation of patchouli (Pogostemon cablin Benth.). Chin J Trop Crop 18(1):52–57

    Google Scholar 

  • Zhang GW, Lan WJ, Su JY, Zeng LM, Yang DP, Wang FS (2002) Chemical constituents and their antifungal and antibacterial activities of essential oil of Pogostemon cablin II. Chin Tradit Herb Drug 33(3):210–212

    CAS  Google Scholar 

  • Zhang Y, Zhang JC, Chen Y, Yang MS, Cao H, Xiao PG (2006) Current progresses in pharmacognosy, chemistry, and pharmacology of Pogostemon cablin. Chin Tradit Herb Drug 37(5):786–790

    CAS  Google Scholar 

  • Zhang JD, Yang XQ, Qiao AM, Sun M, He SG, Lei W, Yin CX (2008) Plant regeneration from hairy roots of Datura arborea L. J Trop Subtrop Botany 16(5):480–485

    CAS  Google Scholar 

  • Zia M, Mirza B, Malik SA, Chaudhary MF (2010) Expression of rol genes in transgenic soybean (Glycine max L.) leads to changes in plant phenotype leaf morphology, and flowering time. Plant Cell Tiss Organ Cult 103:227–236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. Peter lindemann, in Martin-Luther Universitaet Halle/Wittenberg, for kindly providing the strain A. rhizogenes ATCC 15834, Dr. Zeng Qin-Qian, Guangdong Food and Drug Vocational College for kindly providing the plants of P. cablin cv shipai, and Prof. Li Hong-Qing and Dr. Chen Lei in College of Life Science of South China Normal University for providing DIG larbeling and Detection Kit for Southern blot analysis. This work was supported by a grant from Guangdong Natural Science Foundation (Contract No.: 2008B020200005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi He-Ping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He-Ping, S., Yong-Yue, L., Tie-Shan, S. et al. Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon Cablin . Plant Cell Tiss Organ Cult 107, 251–260 (2011). https://doi.org/10.1007/s11240-011-9976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9976-9

Keywords

Navigation