Skip to main content
Log in

Somatic embryogenesis of the heavy metal accumulator Prosopis laevigata

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Somatic embryogenesis and whole plant regeneration was achieved in callus cultures derived from immature zygotic embryos of Prosopis laevigata (Humb. & Bonpl. ex Willd.) M.C. Johnst., recently identified as chromium (Cr), cadmium (Cd), lead (Pb) and nickel (Ni) accumulator. Embryogenic calli were induced on Murashige and Skoog (MS) medium added with a mixture of organic components plus N-6 benzyladenine (BA) (6.62 μM) and 2,4-dichlorophenoxyacetic acid (2,4-D) (2.26 μM) or thidiazuron (4.54–9.08 μM) and indole-3-acetic acid (1.42 μM). Embryogenic calli transferred onto half-strength MS medium without plant growth regulators developed globular embryos, of which 20% matured when treated with 3.75% (w/v) polyethylene glycol (PEG), and of these 50% fully differentiated into plantlet embryo. Regenerated plants were successfully acclimatized (90%), while in vitro seedlings transferred to MS medium containing 0.5 mM Cd, Cr, Ni or Pb, exhibited high heavy metals accumulation (627 mg Cr kg−1, 5,688 mg Cd kg−1, 1,148 mg Ni kg−1, and 3,037 mg Pb kg−1 dry weight) and efficient roots to shoots translocation (42–73%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AGP:

Arabinogalactan protein

Arg:

l-Arginine

Asn:

l-Asparagine monohydrate

BA:

N-6 Benzyladenine

BF:

Bioaccumulation factor

Cd:

Cadmium

CH:

Casein enzymatic hydrolysate

Cr:

Chromium

Cam:

Citric acid monohydrate

2,4-D:

2,4-Dichlorophenoxyacetic acid

GA3 :

Gibberellic acid

Gln:

Glutamine

HM:

Heavy metals

HDPE:

High density polyethylene

IAA:

Indole-3-acetic acid

Pb:

Lead

MS:

Murashige and Skoog (1962) medium

Ni:

Nickel

PEG:

Polyethylene glycol

PGR:

Plant growth regulator

PVP:

Polyvinylpyrrolidone

TBA:

Tertiary butyl alcohol

TDZ:

Thidiazuron

TF:

Translocation factor

Vc:

Vitamin C (L-ascorbic acid)

References

  • Alkhateeb A (2008) Comparison effects of sucrose and date palm syrup on somatic embryogenesis of date palm (Phoenix dactylifera L). Am J Biochem Biotechol 4:19–23

    Article  CAS  Google Scholar 

  • Baker CM, Burns JA, Wetzstein HY (1994) Influence of photoperiod and medium formulation of peanut somatic embryogenesis. Plant Cell Rep 13:159–163

    Article  CAS  Google Scholar 

  • Bellettrea A, Couillerota JP, Blervacqa AS, Aubertb S, Goutc E, Hilberta JL, Vasseura J (2001) Glycerol effects both carbohydrate metabolism and cytoskeletal rearrangements during the induction of somatic embryogenesis in chicory leaf tissues. Plant Physiol Biochem 39:503–511

    Article  Google Scholar 

  • Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254

    Article  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Chávez-Ávila VM, Vernon-Carter EJ (2007) Clonal propagation of mesquite tree (Prosopis laevigata Humb. & Bonpl. ex Willd. M.C. Johnston). I. via cotyledonary nodes. In Vitro Cell Dev Biol Plant 43:260–266

    Article  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010a) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 10:5862–5867

    Article  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Estrada-Zúñiga ME, Barrera-Díaz CE, Vernon-Carter EJ, Cruz-Sosa F (2010b) In vitro lead and nickel accumulation in mesquite (Prosopis laevigata) seedlings. Rev Mex Ing Quím 9:1–9

    Google Scholar 

  • Cabral GB, Carneiro VTC, Lacerda AL, do Valle CB, Martinelli AP, Dusi DMA (2011) Somatic embryogenesis and organogénesis in apomictic and sexual Brachiaria brizantha. Plant Cell Tiss Organ Cult. doi: 10.1007/s11240-011-9978-7

  • Capataz-Tafur J, Trejo-Tapia G, Rodríguez-Monroy M, Sepulveda-Jiménez G (2011) Arabinogalactan proteins are involved in cell aggregation of cell suspension cultures of Beta vulgaris L. Plant Cell Tiss Organ Cult 106:169–177

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Dewan A, Nanda K, Gupta SC (1992) In vitro micropropagation of Acacia nilotica subsp. Indica Brenan via cotyledonary nodes. Plant Cell Rep 12:18–21

    Article  Google Scholar 

  • Felker P (1981) Uses of tree legumes in semiarid regions. Econ Bot 35:174–186

    Article  Google Scholar 

  • Gairi A, Rashid A (2004) Direct differentiation of somatic embryos on different regions of intact seedlings of Azadirachta in response to thidiazuron. J Plant Physiol 161:1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Iantcheva A, Vlahova M, Bakalova E, Kondorosi E, Elliott MC, Atanassov A (1999) Regeneration of diploid annual medics via direct somatic embryogenesis promoted by thidiazuron and benzylaminopurine. Plant Cell Rep 18:904–910

    Article  CAS  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. W. H. Freeman, San Francisco

    Google Scholar 

  • Kokubo A, Sakurai N, Kuraishi S, Takeda K (1991) Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiol 97:509–514

    Article  PubMed  CAS  Google Scholar 

  • Konieczny R, Pilarska M, Tuleja M, Salaj T, Ilnicki T (2010) Somatic embryogenesis and plant regeneration in zygotic embryos of Trifolium nigrescens (Viv.). Plant Cell Tissue Organ Cult 100:123–130

    Article  Google Scholar 

  • Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol 2:136–148

    Article  CAS  Google Scholar 

  • Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L). Plant Cell Tiss Organ Cult. doi: 10.1007/s11240-011-9952-4

  • Ma G, Lü J, da Silva JAT, Zhang X, Zhao J (2011) Shoot organogénesis and somatic embryogenesis from leaf and shoot explats of Ochna integérrima (Lour). Plant Cell Tissue Organ Cult 104:157–162

    Article  CAS  Google Scholar 

  • Maldonado-Aguirre LJ, De la Garza FE (2000) El mezquite en México: Rasgos de importancia productiva y necesidades de desarrollo. In: Frías-Hernández JT, Olalde-Portugal V, Vernon-Carter EJ (eds) El mezquite árbol de usos múltiples. Estado actual del conocimiento en México. Universidad de Guanajuato, Guanajuato, pp 13–36

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1995) Thidiazuron-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94:268–276

    Article  CAS  Google Scholar 

  • NCSS-number cruncher (2001) Statistical software. Kaysville, Utah

    Google Scholar 

  • Orozco-Villafuerte J, Cruz-Sosa F, Ponce-Alquicira E, Vernon-Carter EJ (2003) Mesquite gum: fractionation and characterization of the gum exuded from Prosopis laevigata obtained from plant tissue culture and from wild trees. Carbohydr Polym 54:327–333

    Article  CAS  Google Scholar 

  • Orozco-Villafuerte J, Buendía-González L, Cruz-Sosa F, Vernon-Carter EJ (2005) Increased mesquite gum formation in nodal explants cultures after treatment with a microbial biomass preparation. Plant Physiol Biochem 43:802–807

    Article  PubMed  CAS  Google Scholar 

  • Palmer CD, Keller WA (2011) Plant regeneration using immature zygotic embryos of Tribulus terrestris. Plant Cell Tissue Organ Cult 105:121–127

    Article  Google Scholar 

  • Pereira-Nieto AB, Pettolino F, Cruz-Silva CTA, Simas FF, Bacic A, AMdA Carneiro-Leão, Lacomini M, Maurer JBB (2007) Cashew-nut tree exudate gum: identification of an arabinogalactan-protein as a constituent of the gum and use on the stimulation of somatic embryogenesis. Plant Sci 173:468–477

    Article  Google Scholar 

  • Rai MK, Shekhawar NS, Harish, Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plat tissue culture: a review of recent progress. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-011-9923-9

  • Salaj J, Petrovská B, Obert B, Pret’ová A (2005) Histological study of embryo-like structures initiated from hypocotyl segments of flax (Linum usitatissimum L.). Plant Cell Rep 24:590–595

    Article  PubMed  CAS  Google Scholar 

  • Shoji M, Sato H, Nakagawa R, Funada R, Kubo T, Ogita S (2006) Influence of osmotic pressure on somatic embryo maturation in Pinus densiflora. J For Res 11:449–453

    Article  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  • Stanton J, Olson DK, Brock JH, Gordon RS (2001) The environmental and economic feasibility of alternative crops in arid areas: considering mesquite in Baja California, Mexico. J Arid Environ 48:9–22

    Article  Google Scholar 

  • Trejo-Espino JL, Rodríguez-Monroy M, Vernon-Carter EJ, Cruz-Sosa F (2010) Emulsifying properties of the gum produced by Prosopis laevigata (Humb. & Bonpl. ex Willd) M.C. Johnst. (Mesquite) cells suspension culture in bioreactor. Rev Mex Ing Quim 9:251–260

    CAS  Google Scholar 

  • Xie DY, Hong Y (2001) Regeneration of Acacia mangium through somatic embryogenesis. Plant Cell Rep 20:34–40

    Article  CAS  Google Scholar 

  • Yang JL, Niu YD, Yang CP, Liu GF, Li CH (2011) Induction of somatic embryogenesis from female flower buds of elite Schisandra chinensis. Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-011-9935-5

  • Yantcheva A, Vlahova M, Antanassov A (1998) Direct somatic embryogenesis and plant regeneration of carnation (Dianthus caryophyllus L.). Plant Cell Rep 18:148–153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Orozco-Villafuerte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buendía-González, L., Estrada-Zúñiga, M.E., Orozco-Villafuerte, J. et al. Somatic embryogenesis of the heavy metal accumulator Prosopis laevigata . Plant Cell Tiss Organ Cult 108, 287–296 (2012). https://doi.org/10.1007/s11240-011-0042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0042-4

Keywords

Navigation