Skip to main content
Log in

Expression of rol genes in transgenic soybean (Glycine max L.) leads to changes in plant phenotype, leaf morphology, and flowering time

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Soybean (Glycine max L.) cultivar NARC-4 was transformed with constructs carrying rolA, rolB, or rolC genes, each under the control of the Cauliflower Mosaic Virus 70S promoter. Cotyledonary nodes of soybean seeds were infected with Agrobacterium tumefaciens strain LBA4404 carrying one of the three rol genes, along with nptII in the plasmid pLBR. The efficiency of the transformation varied slightly among the three constructs, with frequencies of 6, 7, and 5% for the rolA, rolB, and rolC genes, respectively, being observed. Southern blot analysis confirmed the integration of rol genes in the soybean genome with varying numbers of copies of the transgene. All transformed plants showed enhanced rooting, but the number of adventitious roots was higher for transformants carrying the rolB transgene. rolA and rolC transformants showed dwarf phenotypes, clustered branching, and variations in leaf morphology. Furthermore, these plants flowered within a short period of time and produced lower numbers of flowers. rolB transformants showed variations in phenotype, including dwarf to semi-dwarf and shrubby growth, abnormal stem growth, short internodes, variations in leaf morphology, and greenish to yellowish-green colored leaves. These plants also flowered early, but dwarf plants produced low numbers of flowers, while shrubby plants produced high numbers of flowers, but these were mostly infertile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BA:

6-benzyladenine

CaMV:

Cauliflower mosaic virus

DTT:

Dithiothreitol

GA3:

Gibberellic acid

IBA:

Indol 3-butyric acid

MES:

Morpholino ethanesulfonic acid

MYA:

Mannitol yeast agar

NOS:

Nopaline synthase

nptII :

Neomycin phosphotransferase

ORF:

Open reading frames

PCR:

Polymerase chain reaction

Ri:

Root inducing

SE:

Shoot elongation

SI:

Shoot induction

T-DNA:

Transfer DNA

References

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  CAS  PubMed  Google Scholar 

  • Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, Lashermes P, Etienne H (2008) Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 101:929–940

    Article  CAS  PubMed  Google Scholar 

  • Altamura MM (2004) Agrobacterium rhizogenes rolB and rolD genes: regulation and involvement in plant development. Plant Cell Tissue Organ Cult 77:89–101

    Article  CAS  Google Scholar 

  • Altamura MM, Tomassi M (1998) Auxin, photoperiod and putrescine affect flower neoformation in normal and rolB-transformed tobacco thin cell layers. Plant Physiol Biochem 36:441–448

    Article  CAS  Google Scholar 

  • Bettini P, Baraldi R, Rapparini F, Melani L, Mauro ML, Bindi D, Buiatti M (2010) The insertion of the Agrobacterium rhizogenes rolC gene in tomato (Solanum lycopersicum L.) affects plant architecture and endogenous auxin and abscisic acid levels. Sci Hortic 123:323–328

    Article  CAS  Google Scholar 

  • Boote KJ, Jones JW, Batchelor WD, Nafziger ED, Myers O (2003) Genetic coefficients in the CROPGRO-Soybean model: links to field performance and genomics. Agron J 95:32–51

    Article  Google Scholar 

  • Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Veselova MV, Tchernoded GK, Kiselev KV, Fedoreyev SA, Zhuravlev YN (2005) Inhibitory effect of the Agrobacterium rhizogenes rolC gene on rabdosiin and rosmarinic acid production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures. Planta 221:471–478

    Article  CAS  PubMed  Google Scholar 

  • Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217:726–735

    Article  CAS  PubMed  Google Scholar 

  • Casanova E, Valdés AE, Zuker A, Fernández B, Vainstein A, Trillas MI, Moysset L (2004) rolC-transgenic carnation plants: adventitious organogenesis and levels of endogenous auxin and cytokinins. Plant Sci 167:551–560

    Article  CAS  Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39

    Article  CAS  PubMed  Google Scholar 

  • Chriqui D, Guivarc’h A, Dewitte W, Prinsen E, van Onkelen H (1996) rol genes and root initiation and development. Plant Soil 187:47–55

    Article  CAS  Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  • Crane C, Wright E, Dixon RA, Wang ZY (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223:1344–1354

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Takayanagi K, Kamada H, Nishimura S, Handa T (2001) Efficient shoot regeneration from hairy roots of Antirrhinum majus L. transformed by the rol type MAT vector system. Plant Cell Rep 20:55–59

    Article  CAS  Google Scholar 

  • Dehio C, Grossmann K, Schell J, Schmülling T (1993) Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 23:1199–1210

    Article  CAS  PubMed  Google Scholar 

  • de Klerk GJ, van der Krieken W, de Jong JC (1999) Review the formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35(3):189–199

    Article  Google Scholar 

  • Donaldson PA, Simmonds DH (2000) Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep 19:478–484

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Estruch JJ, Chriqui D, Grossmann K, Schell J, Spena A (1991) The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10:2889–2895

    CAS  PubMed  Google Scholar 

  • Filippini F, Lo Schiavo F, Terzi M, Costantino P, Trovato M (1994) The plant oncogene rolB alters binding of auxin to plant cell membranes. Plant Cell Physiol 35:767–771

    CAS  Google Scholar 

  • Filippini F, Rossi V, Marin O, Trovato M, Costantino P, Downey PM, Lo Schiavo F, Terzi M (1996) A plant oncogene as a phosphatase. Nature 379:499–500

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • García-Sogo B, Pineda B, Castelblanque L, Antón T, Medina M, Roque E, Torresi C, Beltrán JP, Moreno V, Cañas LA (2010) Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep 29:61–77

    Article  PubMed  Google Scholar 

  • Giovannini A, Zottini M, Morreale G, Spena A, Allavena A (1999) Ornamental traits modification by rol genes in Osteospermum ecklonis transformed with Agrobacterium tumefaciens. In Vitro Cell Dev Biol 35:70–75

    Article  CAS  Google Scholar 

  • Godo T, Tsujii O, Ishikawa K, Mii M (1997) Fertile transgenic plants of Nierembergia scoparia Sendtner obtained by a mikimopine type strain of Agrobacterium rhizogenes. Sci Hortic 68:101–111

    Article  CAS  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat Biotechnol 6:915–922

    Article  CAS  Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    Article  CAS  PubMed  Google Scholar 

  • Koperdáková J, Komarovská H, Košuth J, Giovannini A, Čellárová E (2009) Characterization of hairy root-phenotype in transgenic Hypericum perforatum L. clones. Acta Physiol Plant 31:351–358

    Article  Google Scholar 

  • Kubo T, Tsuro M, Tsukimori A, Shizukawa Y, Takemoto T, Inaba K, Shiozaki S (2006) Morphological and physiological changes in transgenic Chrysanthemum morifolium Ramat. ‘Ogura-nishiki’ with rolC. J Jpn Soc Hortic Sci 75:312–317

    Article  CAS  Google Scholar 

  • Kumar M, Shukla AK, Singh H, Tuli R (2009) Development of insect resistant transgenic cotton lines expressing cry1EC gene from an insect bite and wound inducible promoter. J Biotechnol 140:143–148

    Article  CAS  PubMed  Google Scholar 

  • Liu SJ, Wei ZM, Huang JQ (2008) The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep 27:489–498

    Article  CAS  PubMed  Google Scholar 

  • Maghuly F, Khan MA, Fernandez EB, Druart P, Watillon B, Laimer M (2008) Stress regulated expression of the GUS-marker gene (uidA) under the control of plant calmodulin and viral 35S promoters in a model fruit tree rootstock: Prunus incisa × serrula. J Biotechnol 135:105–116

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Barbier-Brygoo H, Spena A, Tempé J, Guern J (1991) Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97:212–216

    Article  CAS  PubMed  Google Scholar 

  • McKenzie MA, Cress WA (1992) The evaluation of South African cultivars of soybean for their susceptibility to Agrobacterium tumefaciens and the production of transgenic soybean. S Afr J Sci 88:193–196

    Google Scholar 

  • Mishiba K, Nishihara M, Abe Y, Nakatsuka T, Kawamura H, Kodama K, Takesawa T, Abe J, Yamamura S (2006) Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol 23:33–38

    CAS  Google Scholar 

  • Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    CAS  PubMed  Google Scholar 

  • Ouartsi A, Clérot D, Meyer A, Dessaux Y, Brevet J, Bonfill M (2004) The T-DNA ORF8 of the cucumopine-type Agrobacterium rhizogenes Ri plasmid is involved in auxin response in transgenic tobacco. Plant Sci 166:557–567

    Article  CAS  Google Scholar 

  • Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213

    Article  CAS  PubMed  Google Scholar 

  • Piispanen R, Aronen T, Chen X, Saranpää P, Häggman H (2003) Silver birch (Betula pendula) plants with aux and rol genes show consistent changes in morphology, xylem structure and chemistry. Tree Physiol 23:721–733

    CAS  PubMed  Google Scholar 

  • Rao SS, Mamadou L, McConnell M, Polisetty R, Kwanyuen P, Hildebrand D (2009) Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent. BMC Biotechnol 9:94

    Article  PubMed  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, O’Neill DP, Wolbang CM, Symons GM, Reid JB (2001) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20:336–353

    Article  PubMed  Google Scholar 

  • Schmülling T, Röhrig H, Pilz S, Walden R, Schell J (1993) Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants. Mol Gen Genet 237:385–394

    PubMed  Google Scholar 

  • Sharma R, Mahla HR, Mohapatra T, Bhargava SC, Sharma MM (2003) Isolating plant genomic DNA without liquid nitrogen. Plant Mol Biol Report 21:43–50

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  CAS  PubMed  Google Scholar 

  • Sun LY, Monneuse MO, Martin-Tanguy J, Tepfer D (1991) Changes in flowering and the accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci 80:145–156

    Article  CAS  Google Scholar 

  • Tanaka N, Fujikawa Y, Aly MAM, Saneoka H, Fujita K, Yamashita I (2001) Proliferation and rol gene expression in hairy root lines of Egyptian clover. Plant Cell Tissue Organ Cult 66:175–182

    Article  CAS  Google Scholar 

  • Tepfer D, Tempé J (1981) Production d’agropine par des raciness formees sous l’action d’Agrobacterium rhizogenes. CR Acad Sci Paris 292:153–156

    CAS  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Tsuro M, Kubo T, Shizukawa Y, Takemoto T, Inaba K (2005) Agrobacterium rhizogenes is a useful transporter for introducing T-DNA of the binary plasmid into the chrysanthemum, Dendranthema grandiflorum Kitamura, genome. Plant Cell Tissue Organ Cult 81:175–181

    Article  CAS  Google Scholar 

  • van der Salm TPM, Hänish ten Cate CH, Dons HJM (1996) Prospects for applications of rol genes for crop improvement. Plant Mol Biol Rep 14:207–228

    Article  Google Scholar 

  • van Altvorst AC, Bino RJ, van Dijk AJ, Lamers AMJ, Lindhout WH, van der Mark F, Dons JJM (1992) Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci 83:77–85

    Article  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43:383–403

    Article  CAS  Google Scholar 

  • von Schweinichen C, Büttner M (2005) Expression of a plant cell wall invertase in roots of Arabidopsis leads to early flowering and an increase in whole plant biomass. Plant Biol 7:469–475

    Article  Google Scholar 

  • Wang GL, Fang HJ (1998) Plant genetic engineering: principle and technique (in Chinese). Science Press, Beijing

    Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  PubMed  Google Scholar 

  • Xue RG, Xie HF, Zhang B (2006) A multi-needle-assisted transformation of soybean cotyledonary node cells. Biotechnol Lett 28:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Srinivasa Reddy MS, Collins GB, Dinkins RD (2000) Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merrill] using immature zygotic cotyledon explants. Plant Cell Rep 19:1090–1097

    Article  CAS  Google Scholar 

  • Yi XP, Yu DY (2006) Transformation of multiple soybean cultivars by infecting cotyledonary-node with Agrobacterium tumefaciens. Afr J Biotechnol 5:1989–1993

    CAS  Google Scholar 

  • Zhang Z, Sun AJ, Cong Y, Sheng BC, Yao QH, Cheng ZM (2006) Agrobacterium-mediated transformation of the apple rootstock Malus micromalus Makino with the RolC gene. In Vitro Cell Dev Biol Plant 42:491–497

    Article  CAS  Google Scholar 

  • Zia M, Riaz-ur-Rehman, Rizvi ZF, Chaudhary MF (2010a) Agrobacterium-mediated transformation of soybean (Glycine max L.): some conditions for standardization. Pak J Bot 42 (in press)

  • Zia M, Rizvi ZF, Riaz-ur-Rehman, Chaudhary MF (2010b) Micropropagation of two Pakistani soybean (Glycine max L.) cultivars from mature seed cotyledonary nodes. Span J Agric Res 8:448–453

    Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. David Tepfer, Institut National de la Recherche Agronomique, Versailles, 78026, France, for providing the Agrobacterium tumefaciens strain LBA4404 harboring pLBR containing rol genes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zia, M., Mirza, B., Malik, S.A. et al. Expression of rol genes in transgenic soybean (Glycine max L.) leads to changes in plant phenotype, leaf morphology, and flowering time. Plant Cell Tiss Organ Cult 103, 227–236 (2010). https://doi.org/10.1007/s11240-010-9771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9771-z

Keywords

Navigation