Skip to main content
Log in

Computational analysis of carbazole-based newly efficient D-π-A organic spacer dye derivatives for dye-sensitized solar cells

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, the newly designed organic dyes (CBS1-CBS3) were designed by the donor (D), π-linkers (π) and acceptor (A) to forming the D-π-A structure. Besides, the screened efficient spacer dye sensitizers were simulated by the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods for dye-sensitized solar cell (DSSC) application. First, the optical absorption peak of CB1 dye was analyzed by the different exchange–correlation (XC) and long-range corrected (LC) functionals with 6-31G(d) basis set. As a result of functional, TD-CAM-B3LYP method nearly well matched with the literature data of CB1. The computational outcomes were shown that the highest occupied molecular orbitals (HOMOs) and lowest unoccupied MOs (LUMOs) of the CBS1-CBS3 dyes confirmed useful response on the electron injection (\(\Delta {G}_{\text{inject}}\)) and dye regeneration (\(\Delta {G}_{\text{reg}}\)). Therefore, the short-circuit current density (\({J}_{\text{SC}}\)) key factors of the light harvesting efficiency (LHE), \(\Delta {G}_{\text{inject}}\)and \(\Delta {G}_{\text{reg}}\) in CBS1-CBS3 dye derivatives were superior performance of the DSSCs. In addition to the highest vertical dipole moment (µnormal) and open circuit photovoltage (\(e{V}_{\text{OC}}\)) of the planned dyes were better performance for DSSCs. Hence, it benefits to higher efficiency. The present theoretical investigation results demonstrate that all the D-π-A dyes may be capable sensitizers for DSSC application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All the data and electronic materials are available for the Gaussian program.

Code availability

Chemdraw, Gaussian 09w, Gaussview, and Gausssum.

References

  1. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,20-bipyridyl4,40-dicarboxylate)ruthenium(II) charge transfer sensitizers (X = Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  3. Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer CH, Grätzel M (1999) Acid–base equilibria of (2,2’-bipyridyl-4,4′-dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge transfer sensitization of nanocrystalline titania. Inorg Chem 38:6298–6305

    Article  CAS  PubMed  Google Scholar 

  4. Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Acc Chem Res 33:269–277

    Article  CAS  PubMed  Google Scholar 

  5. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Article  CAS  PubMed  Google Scholar 

  6. Nogueira AF, Longo C, De Paoli MA (2004) Polymers in dye sensitized solar cells: overview and perspectives. Coord Chem Res 248:1455–1468

    Article  CAS  Google Scholar 

  7. Tsai MS, Hsu YC, Lin JT, Chen HC, Hsu CP (2007) Organic dyes containing 1H-phenanthro [9,10-d]imidazole conjugation for solar cells. J Phys Chem C 111:18785–18793

    Article  CAS  Google Scholar 

  8. Chang YJ, Chow TJ (2009) Dye-sensitized solar cell utilizing organic dyads containing triarylene conjugates. Tetrahedron 65:4726–4734

    Article  CAS  Google Scholar 

  9. Cai-Rong Z, Zi-Jiang L, Yu-Hong C, Hong-Shan C, You-Zhi W, Li-Hua Y (2009) DFT and TDDFT study on organic dye sensitizers D5, DST and DSS for solar cells. J Mol Struct Theochem 899:86–93

    Article  CAS  Google Scholar 

  10. Hagberg DP, Edvinsson T, Marinado T, Boschloo G, Hagfeldt A, Sun L (2006) A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem Commun 21:2245–2247

    Article  CAS  Google Scholar 

  11. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  PubMed  Google Scholar 

  12. Arunkumar A, Shanavas S, Acevedo R, Anbarasan PM (2020) Acceptor tuning effect on TPA-based organic efficient sensitizers for optoelectronic applications-quantum chemical investigation. Struct Chem 31:1029–1042

    Article  CAS  Google Scholar 

  13. Xu H, Sun Q, An Z, Wei Y, Liu X (2015) Electroluminescence from europium(III) complexes. Coord Chem Rev 293:228–249

    Article  CAS  Google Scholar 

  14. ou JH, Kumar S, Agrawal A, Li TH, Sahoo S, (2015) Approaches for fabricating high efficiency organic light emitting diodes. J Mater Chem C 3:2974–3002

    Article  CAS  Google Scholar 

  15. Yang J, Huang J, Li QQ, Li Z (2016) Blue AIEgens: approaches to control the intramolecular conjugation and the optimized performance of OLED devices. J Mater Chem C 4:2663–2684

    Article  CAS  Google Scholar 

  16. Zhang JL, Zhong S, Zhong JQ, Niu TC, Hu WP, Wee AT, Chen W (2015) rational design of two-dimensional molecular donor-acceptor nanostructure arrays. Nanoscale 7:4306–4324

    Article  CAS  PubMed  Google Scholar 

  17. Wu K, Zhang T, Zhan L, Zhong C, Gong S, Lu ZH, Yang C (2016) Tailoring optoelectronic properties of phenanthroline-based thermally activated delayed fluorescence. Adv Opt Mater 4:1558–1566

    Article  CAS  Google Scholar 

  18. Turkoglu G, Cinar ME, Buyruk A, Tekin E, Mucur SP, Kaya K, Ozturk T (2016) Novel organoboron compounds derived from thieno[3,2-b]thiophene and triphenylamine units for OLED devices. J Mater Chem C 4:6045–6053

    Article  CAS  Google Scholar 

  19. Vikramaditya T, Saisudhakar M, Sumithra K (2016) Computational study on thermally activated delayed fluorescence of donor-linker-acceptor network molecules. RSC Adv 6:37203–37211

    Article  CAS  Google Scholar 

  20. Jiang J, Hu D, Hanif M, Li X, Su S, Xie Z, Liu L, Zhang S, Yang B, Ma Y (2016) Twist angle and rotation freedom effects on luminescent donor-acceptor materials: crystal structures, photophysical properties, and OLED application. Adv Opt Mater 4:2109–2118

    Article  CAS  Google Scholar 

  21. Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Fan W, Tan D, Deng WQ (2012) Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study Chem Phys Chem 13:2051–2060

    CAS  PubMed  Google Scholar 

  23. Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser JE, Humphry-Baker R, Zakeeruddin SM, Grätzel M, Bäuerle P (2012) Significant improvement of dye-sensitized solar cell performance by small structural modification inp-conjugated donor-acceptor dyes. Adv Funct Mater 22:1291–1302

    Article  CAS  Google Scholar 

  24. Hsu CP, Hirata S, Head-Gordon M (2000) Excitation energies from timedependent density functional theory for linear polyene oligomers:butadiene to decapentaene. J Phys Chem A 105:451–458

    Article  CAS  Google Scholar 

  25. Meng S, Kaxiras E, Nazeeruddin MK, Grätzel M (2011) Design of dye acceptors for photovoltaics from first-principles calculations. J Phys Chem C 115:9276–9282

    Article  CAS  Google Scholar 

  26. Pastore M, Mosconi E, De Angelis F (2012) Computational investigation of dye-iodine interactions in organic dye-sensitized solar cells. J Phys Chem C 116:5965–5973

    Article  CAS  Google Scholar 

  27. Srinivas K, Kumar CR, Reddy MA, Bhanuprakash K, Rao VJ, Giribabu L (2011) D-π-A organic dyes with carbazole as donor for dye-sensitized solar cells. Synth Met 161:96–105

    Article  CAS  Google Scholar 

  28. Zhang XH, Wang ZS, Cui Y, Koumura N, Furube A, Hara K (2009) Organic sensitizers based on hexylthiophene-functionalized indolo [3, 2-b] carbazole for efficient dye-sensitized solar cells. J Phys Chem C 113:13409–13415

    Article  CAS  Google Scholar 

  29. Cai S, Tian G, Li X, Su J, Tian H (2013) Efficient and stable DSSC sensitizers based on substituted dihydroindolo [2, 3-b] carbazole donors with high molar extinction coefficients. J Mater Chem A 1:11295–11305

    Article  CAS  Google Scholar 

  30. Klimeš J, Michaelides A (2012) Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137:120901–120912

    Article  PubMed  CAS  Google Scholar 

  31. Ruiz VG, Liu W, Zojer E, Scheffler M, Tkatchenko A (2012) Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. Phys Rev Lett 108:46103–146105

    Article  CAS  Google Scholar 

  32. Arunkumar A, Shanavas S, Anbarasan PM (2018) First-principles study of efficient phenothiazine-based D-π-A organic sensitizers with various spacers for DSSCs. J Comput Electron 17:1410–1420

    Article  CAS  Google Scholar 

  33. Arunkumar A, Deepana M, Shanavas S, Acevedo R, Anbarasan PM (2019) Computational investigation on series of metal-free sensitizers in tetrahydroquinoline with different π-spacer groups for DSSCs. ChemistrySelect 4:4097–4104

    Article  CAS  Google Scholar 

  34. Perdew JP, Wang Y (2018) Erratum: accurate and simple analytic representation of the electron-gas correlation energy [Phys. Rev. B 45, 13244 (1992)]. Phys Rev B 98:079904

  35. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–7

  36. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  37. Arunkumar A, Anbarasan PM (2019) Optoelectronic properties of a simple metal-free organic sensitizer with different spacer groups: quantum chemical assessments. J Electron Mater 48:1522–1530

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RJ, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford, CT, USA

    Google Scholar 

  39. Arunkumar A, Shanavas S, Acevedo R, Anbarasan PM (2020) Quantum chemical investigation of modified coumarin-based organic efficient sensitizers for optoelectronic applications. Eur Phys J D 74:1–8

    Article  CAS  Google Scholar 

  40. Sang-aroon W, Laopha S, Chaiamornnugool P, Tontapha S, Saekow S, Amornkitbamrung V (2013) DFT and TDDFT study on the electronic structure and photoelectrochemical properties of dyes derived from cochineal and lac insects as photosensitizer for dye-sensitized solar cells. J Mol Model 19:1407–1415

    Article  CAS  PubMed  Google Scholar 

  41. Senthilkumar P, Nithya C, Anbarasan PM (2014) Quantum chemical investigations on the effect of dodecyloxy chromophore in 4-amino stilbene sensitizer for DSSCs. Spectrochim Acta A Mol Biomol Spectrosc 122:15–21

    Article  CAS  PubMed  Google Scholar 

  42. Peach MJ, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128:044118

  43. Zhang L, Yang X, Wang W, Gurzadyan GG, Li J, Li X, An J, Yu Z, Wang H, Cai B, Hagfeldt A (2019) 13.6% efficient organic dye-sensitized solar cells by minimizing energy losses of the excited state. ACS Energy Lett 4:943–951

    Article  CAS  Google Scholar 

  44. Chaitanya K, Ju XH, Heron BM (2014) Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv 4:26621–26634

    Article  CAS  Google Scholar 

  45. Narayan MR (2012) Dye sensitized solar cells based on natural photosensitizers. Renew Sustain Energy Rev 16:208–215

    CAS  Google Scholar 

  46. Zhang J, Li H-B, Sun S-L, Geng Y, Wu Y, Su Z-M (2012) Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells. J Mater Chem 22(2):568–576

    Article  CAS  Google Scholar 

  47. Daeneke T, Mozer AJ, Uemura Y, Makuta S, Fekete M, Tachibana Y, Koumura N, Bach U, Spiccia L (2012) Dye regeneration kinetics in dye-sensitized solar cells. J Am Chem Soc 134:16925–16928

    Article  CAS  PubMed  Google Scholar 

  48. Arunkumar A, Anbarasan PM (2018) Highly efficient organic indolocarbazole dye in different acceptor units for optoelectronic applications-a first principle study. Struct Chem 29:967–976

    Article  CAS  Google Scholar 

  49. Rühle S, Greenshtein M, Chen SG, Merson A, Pizem H, Sukenik CS, Cahen D, Zaban A (2005) Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J Phys Chem B 109:18907–18913

    Article  PubMed  CAS  Google Scholar 

  50. Sang-aroon W, Saekow S, Amornkitbamrung V (2012) Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J Photochem Photobiol A 236:35–40

    Article  CAS  Google Scholar 

  51. Arunkumar A, Prakasam M, Anbarasan PM (2017) Influence of donor substitution at D-π-A architecture in efficient sensitizers for dye-sensitized solar cells: first-principle study. Bull Mater Sci 40:1389–1396

    Article  CAS  Google Scholar 

  52. Ning Z, Zhang Q, Wu W, Pei H, Liu BO, Tian HE (2008) Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J Org Chem 73:3791–3797

    Article  CAS  PubMed  Google Scholar 

  53. Sayama K, Tsukagoshi S, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2002) Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J Phys Chem B 106:1363–1371

    Article  CAS  Google Scholar 

  54. Xu B, Li Y, Song P, Ma F, Yang Y (2021) Significant Improvements of near-IR absorption, electron injection, and oxidized regeneration on organic sensitizers for solar cells. J Phys Chem C

  55. Islam A, Sugihara H, Arakawa H (2003) Molecular design of ruthenium (II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J Photochem Photobiol A 158:131–138

    Article  CAS  Google Scholar 

  56. Arunkumar A, Shanavas S, Acevedo R, Anbarasan PM (2020) Computational analysis on D-π-A based perylene organic efficient sensitizer in dye-sensitized solar cells. Opt Quant Electron 52:1–13

    Article  CAS  Google Scholar 

  57. Roy JK, Kar S, Leszczynski J (2020) Revealing the photophysical mechanism of N, N′-diphenyl-aniline based sensitizers with the D-D-π-A framework: theoretical insights. ACS Sustain Chem Eng 8:13328–13341

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to express their gratitude to the Deanship of Scientifc Research at King Khalid University, Abha, Saudi Arabia for funding this work through the Research Groups Program under Grant No. R.G.P.2/103/41.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all the authors. P. M. Anbarasan, A. Arunkumar, and Mohd Shkir have given approval to the final version of the revised manuscript.

Corresponding author

Correspondence to Anbarasan Ponnusamy Munusamy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnusamy Munusamy, A., Ammasi, A. & Shkir, M. Computational analysis of carbazole-based newly efficient D-π-A organic spacer dye derivatives for dye-sensitized solar cells. Struct Chem 33, 1097–1107 (2022). https://doi.org/10.1007/s11224-021-01853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01853-4

Keywords

Navigation