Skip to main content
Log in

First-principles study of efficient phenothiazine-based D–π–A organic sensitizers with various spacers for DSSCs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Design of highly efficient sensitizers is one of the most significant issues for dye-sensitized solar cells (DSSCs). In this work, we designed and screened a series of phenothiazine-derivative dyes with donor–π spacer–acceptor (D–π–A) architecture based on a structural configuration with a phenothiazine group as the donor (D) part, a thiophene as the linker (π), and a 2-cyanoacrylic acid moiety (A) as the electron-acceptor segment, comparing the effects of different π-spacer groups between the electron donor and acceptor. The effects of different electron-deficient linker units on the absorption/emission spectra and photovoltaic properties were investigated by a combination of density functional theory (DFT) and time-dependent DFT (TD-DFT) approaches. Based on the ground- and excited-state geometries, the absorption and emission spectra were calculated using the TD-DFT method. Different exchange–correlation functionals were first applied to establish a proper methodology for calculating the excited-state energy of the reference dye, known as TC104. The theoretical results calculated using the TD-CAM-B3LYP/B3LYP method with 6-311++G(d,p)/6-31G(d,p) basis set were found to agree well with the absorption and emission wavelengths for TC104 found experimentally. Overall, dye molecules SP1–SP4 (especially SP2 and SP4) were found to be promising sensitizers for highly efficient organic DSSCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’regan, B., Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. Gratzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  Google Scholar 

  3. Hagfeldt, A., Gratzel, M.: Molecular photovoltaics. Acc. Chem. Res. 33, 269–277 (2000)

    Article  Google Scholar 

  4. Wu, K.L., Li, C.H., Chi, Y., Clifford, J.N., Cabau, L., Palomares, E., Cheng, Y.M., Pan, H.A., Chou, P.T.: Dye molecular structure device open-circuit voltage correlation in Ru (II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. J. Am. Chem. Soc. 134, 7488–7496 (2012)

    Article  Google Scholar 

  5. Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  6. Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    Article  Google Scholar 

  7. Arunkumar, A., Prakasam, M., Anbarasan, P.M.: Influence of donor substitution at D–π–A architecture in efficient sensitizers for dye-sensitized solar cells: first principle study. Bull. Mater. Sci. 40, 1389–1396 (2017)

    Article  Google Scholar 

  8. Wang, Z.S., Cui, Y., Hara, K., Dan Oh, Y., Kasada, C., Shinpo, A.: A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv. Mater. 19, 1138–1141 (2007)

    Article  Google Scholar 

  9. Kandavelu, V., Huang, H.S., Jian, J.L., Yang, T.C.K., Wang, K.L., Huang, S.T.: Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 83, 574–581 (2009)

    Article  Google Scholar 

  10. Bourass, M., Benjelloun, A.T., Hamidi, M., Benzakour, M., Mcharfi, M., Sfaira, M., Serein-Spirau, F., Lere-Porte, J.P., Sotiropoulos, J.M., Bouzzine, S.M., Bouachrine, M.: DFT theoretical investigations of π-conjugated molecules based on thienopyrazine and different acceptor moieties for organic photovoltaic cells. J. Saudi Chem. Soc. 20, 415–425 (2016)

    Article  Google Scholar 

  11. Horiuchi, T., Miura, H., Sumioka, K., Uchida, S.: High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126, 12218–12219 (2004)

    Article  Google Scholar 

  12. Tian, H., Yang, X., Chen, R., Pan, Y., Li, L., Hagfeldt, A.: Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem. Commun. 36, 3741–3743 (2007)

    Article  Google Scholar 

  13. Kim, D., Lee, J.K., Kang, O., Ko, J.: Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cell. Tetrahedron 63, 1913–1922 (2007)

    Article  Google Scholar 

  14. Stathatos, E., Lianos, P., Laschewsky, A., Ouari, O., Van Cleuvenberg, P.: Synthesis of a hemicyanine dye bearing two carboxylic groups and its use as a photosensitizer in dye-sensitized photoelectrochemical cells. Chem. Mater. 13, 3888–3892 (2001)

    Article  Google Scholar 

  15. Kar, S., Roy, J.K., Leszczynski, J.: In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future. NPJ Comput. Mater. 3, 22 (2017)

    Article  Google Scholar 

  16. Snaith, H.J., Grätzel, M.: Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: implication to dye-sensitized solar cells. Appl. Phys. Lett. 89, 262114 (2006)

    Article  Google Scholar 

  17. Park, H., Bae, E., Lee, J.-J., Park, J., Choi, W.: Effect of the anchoring group in Ru-Bipyridyl sensitizers on the photoelectrochemical behavior of dye-sensitized TiO2 electrodes: carboxylate versus phosphonate linkages. J. Phys. Chem. B 110, 8740–8749 (2006)

    Article  Google Scholar 

  18. Bae, E., Choi, W.: Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light. J. Phys. Chem. B 110, 14792–14799 (2006)

    Article  Google Scholar 

  19. Anderson, S., Taylor, P.N., Verschoor, G.L.B.: Benzofuran trimers for organic electroluminescence. Chem. A Eur. J. 10, 518–527 (2004)

    Article  Google Scholar 

  20. Ahmad, S., Guillen, E., Kavan, L., Grätzel, M., Nazeeruddin, M.K.: Metal free sensitizer and catalyst for dye sensitized solar cells. Energy Environ. Sci. 6, 3439–3466 (2013)

    Article  Google Scholar 

  21. Teng, C., Yang, X., Yang, C., Tian, H., Li, S., Wang, X., Hagfeldt, A., Sun, L.: Influence of triple bonds as π-spacer units in metal-free organic dyes for dye-sensitized solar cells. J. Phys. Chem. C 114, 11305–11313 (2010)

    Article  Google Scholar 

  22. Zhang, X., Grätzel, M., Hua, J.: Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells. Front. Optoelectron. 9, 3–37 (2016)

    Article  Google Scholar 

  23. Casanova, D., Rotzinger, F.P., Gratzel, M.: Computational study of promising organic dyes for high-performance sensitized solar cells. J. Chem. Theory Comput. 6, 1219–1227 (2010)

    Article  Google Scholar 

  24. Meng, S., Kaxiras, E., Nazeeruddin, M.K., Gratzel, M.: Design of dye acceptors for photovoltaics from first-principles calculations. J. Phys. Chem. C 115, 9276–9282 (2011)

    Article  Google Scholar 

  25. Becke, A.D.: A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993)

    Article  Google Scholar 

  26. Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)

    Article  Google Scholar 

  27. Lin, Y.S., Li, G.D., Mao, S.P., Chai, J.D.: Long-range corrected hybrid density functionals with improved dispersion corrections. J. Chem. Theory Comput. 9, 263–272 (2013)

    Article  Google Scholar 

  28. Rassolov, V.A., Ratner, M.A., Pople, J.A., Redfern, P.C., Curtiss, L.A.: 6–31G* basis set for third-row atoms. J. Comput. Chem. 22, 976–984 (2001)

    Article  Google Scholar 

  29. Kar, S., Roy, J.K., Leszczynska, D., Leszczynski, J.: Power conversion efficiency of arylamine organic dyes for dye-sensitized solar cells (DSSCs) explicit to cobalt electrolyte: understanding the structural attributes using a direct QSPR approach. Computation 1, 2 (2016)

    Article  Google Scholar 

  30. Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998)

    Article  Google Scholar 

  31. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, revision D.01. Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  32. O’Boyle, N.M., Tenderholt, A.L., Langner, K.M.: Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)

    Article  Google Scholar 

  33. Qin, P., Yang, X.C., Chen, R.K., Sun, L.C., Marinado, T., Edvinsson, T., Boschloo, G., Hagfeldt, A.: Influence of π-conjugation units in organic dyes for dye-sensitized solar cells. J. Phys. Chem. C 111, 1853–1860 (2007)

    Article  Google Scholar 

  34. Asbury, J.B., Wang, Y.Q., Hao, E., Ghosh, H., Lian, T.: Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res. Chem. Intermed. 27, 393–406 (2001)

    Article  Google Scholar 

  35. Cahen, D., Hodes, G., Grätzel, M., Guillermoles, J.F., Riess, I.: Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 104, 2053–2059 (2000)

    Article  Google Scholar 

  36. May, V., Kühn, O.: Intramolecular Electronic Transitions. Charge and Energy Transfer Dynamics in Molecular Systems, 3rd edn, pp. 255–307. Wiley, Hoboken (2000)

    Google Scholar 

  37. Hu, W., Yu, P., Zhang, Z., Shen, W., Li, M., He, R.: Theoretical study of YD2-o-C8-based derivatives as promising sensitizers for dye-sensitized solar cells. J. Mater. Sci. 52, 1235–1245 (2017)

    Article  Google Scholar 

  38. Chaitanya, K., Ju, X.H., Heron, B.M.: Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv. 4, 26621–26634 (2014)

    Article  Google Scholar 

  39. Zeng, W., Liu, T., Wang, Z., Tsukimoto, S., Saito, M., Ikuhara, Y.: Oxygen adsorption on anatase TiO2 (101) and (001) surfaces from first principles. Mater. Trans. 51, 171–175 (2010)

    Article  Google Scholar 

  40. Li, M., Kou, L., Diao, L., Zhang, Q., Li, Z., Wu, Q., Lu, W., Pan, D., Wei, Z.: Theoretical study of WS-9-based organic sensitizers for unusual Vis/NIR absorption and highly efficient dye-sensitized solar cells. J. Phys. Chem. C 119, 9782–9790 (2015)

    Article  Google Scholar 

  41. Narayan, M.R.: Dye sensitized solar cells based on natural photosensitizers. Renew. Sustain. Energy Rev. 16, 208–215 (2012)

    Google Scholar 

  42. Preat, J., Jacquemin, D., Perpete, E.A.: Towards new efficient dye-sensitized solar cells. Energy Environ. Sci. 3, 891–904 (2010)

    Article  Google Scholar 

  43. Marinado, T., Nonomura, K., Nissfolk, J., Karlsson, M.K., Hagberg, D.P., Sun, L., Hagfeldt, A.: How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 26, 2592–2598 (2009)

    Article  Google Scholar 

  44. Rühle, S., Greenshtein, M., Chen, S.G., Merson, A., Pizem, H., Sukenik, C.S., Cahen, D., Zaban, A.: Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J. Phys. Chem. B 109, 18907–18913 (2005)

    Article  Google Scholar 

  45. Zhang, J., Li, H.B., Sun, S.L., Geng, Y., Wu, Y., Su, Z.M.: Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells. J. Mater. Chem. 22, 568–576 (2012)

    Article  Google Scholar 

  46. Zhang, Z.L., Zou, L.Y., Ren, A.M., Liu, Y.F., Feng, J.K., Sun, C.C.: Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers. Dyes Pigm. 96, 349–363 (2013)

    Article  Google Scholar 

  47. Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., Murata, S., Arakawa, H., Tachiya, M.: Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108, 4818–4822 (2004)

    Article  Google Scholar 

  48. Preat, J., Jacquemin, D., Michaux, C., Perpète, E.A.: Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem. Phys. 376, 56–68 (2010)

    Article  Google Scholar 

  49. Zhang, J., Kan, Y.H., Li, H.B., Geng, Y., Wu, Y., Su, Z.M.: How to design proper π-spacer order of the D–π–A dyes for DSSCs? A density functional response. Dyes Pigm. 95, 313–321 (2012)

    Article  Google Scholar 

  50. Ding, W.L., Wang, D.M., Geng, Z.Y., Zhao, X.L., Xu, W.B.: Density functional theory characterization and verification of high-performance indoline dyes with D–A–π–A architecture for dye-sensitized solar cells. Dyes Pigm. 98, 125–135 (2013)

    Article  Google Scholar 

  51. Islam, A., Sugihara, H., Arakawa, H.: Molecular design of ruthenium (II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J. Photochem. Photobiol. A Chem. 158, 131–138 (2003)

    Article  Google Scholar 

  52. Ning, Z., Zhang, Q., Wu, W., Pei, H., Liu, B., Tian, H.: Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J. Org. Chem. 73, 3791–3797 (2008)

    Article  Google Scholar 

  53. Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., Arakawa, H.: Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J. Phys. Chem. B 106, 1363–1371 (2002)

    Article  Google Scholar 

  54. Daeneke, T., Mozer, A.J., Uemura, Y., Makuta, S., Fekete, M., Tachibana, Y., Koumura, N., Bach, U., Spiccia, L.: Dye regeneration kinetics in dye-sensitized solar cells. J. Am. Chem. Soc. 134, 16925–16928 (2012)

    Article  Google Scholar 

  55. Sang-aroon, W., Saekow, S., Amornkitbamrung, V.: Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 236, 35–40 (2012)

    Article  Google Scholar 

  56. Li, Y., Pullerits, T., Zhao, M., Sun, M.: Theoretical characterization of the PC60BM: PDDTT model for an organic solar cell. J. Phys. Chem. C 115, 21865–21873 (2011)

    Article  Google Scholar 

  57. Nithya, R., Senthilkumar, K.: Theoretical studies on the quinoidal thiophene based dyes for dye sensitized solar cell and NLO applications. Phys. Chem. Chem. Phys. 16, 21496–21505 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the academic referees for their useful and critical comments that improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Anbarasan.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunkumar, A., Shanavas, S. & Anbarasan, P.M. First-principles study of efficient phenothiazine-based D–π–A organic sensitizers with various spacers for DSSCs. J Comput Electron 17, 1410–1420 (2018). https://doi.org/10.1007/s10825-018-1226-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1226-5

Keywords

Navigation