Skip to main content

Advertisement

Log in

Highly efficient organic indolocarbazole dye in different acceptor units for optoelectronic applications—a first principle study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A series of novel organic dyes (ICZA1, ICZA2, ICZA3, ICZA4) with D-π-A structural configuration incorporating indolo[3,2,1-jk]carbazole moiety as donor (D) unit, thiophene as π-linker and 2-cyanoacrylic acid as acceptor unit were investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. Indolo[3,2,1-jk]carbazole-based D-π-A dyes composed of different acceptor groups were designed. By modulating acceptor unit, the efficiency of D-π-A dye-based dye-sensitized solar cells (DSSCs) can be further improved. In the present work, four novel push-pull organic dyes only differing in electron acceptor, have been designed based on the experimental literature value of IC-2. In order to further improve the light harvesting capability of indolo[3,2,1-jk]carbazole dyes, the acceptor influence on the dye performance were examined. The NLO property of the designed dye molecules can be derived as polarizability and hyperpolarizability. The calculated value of ICZA2 dye is the best candidate for NLO properties. Furthermore, the designed organic dyes exhibit good photovoltaic performance of charge transfer characteristics, driving force of electron injection, dye regeneration, global reactivity, and light harvesting efficiency (LHE). From the calculated value of ICZA4 dye, it has been identified as a good candidate for DSSCs applications. Finally, it is concluded that the both ICZA2 and ICZA4 dyes theoretically agrees well with the experimental value of IC-2 dye. Hence, the dyes ICZA2 and ICZA4 can serve as an excellent electron withdrawing groups for NLO and DSSCs applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Feng J, Jiao Y, Ma W, Nazeeruddin MK, Grätzel M, Meng S (2013) First principles design of dye molecules with ullazine donor for dye sensitized solar cells. J Phys Chem C 117:3772–3778

    Article  CAS  Google Scholar 

  3. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gr¨atzel M (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    Article  CAS  PubMed  Google Scholar 

  4. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MKE, Diau WG, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  CAS  PubMed  Google Scholar 

  5. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  CAS  PubMed  Google Scholar 

  6. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Koh TM, Hagfeldt A, Grätzel M, Mhaisalkar SG, Grimsdale AC (2013) New donor–π–acceptor sensitizers containing 5H-[1, 2, 5] thiadiazolo [3, 4-f] isoindole-5, 7 (6H)-dione and 6 H-pyrrolo [3, 4-g] quinoxaline-6, 8 (7 H)-dione units. Chem Commun 49:2409–2411

    Article  CAS  Google Scholar 

  8. Yao Z, Wu H, Li Y, Wang J, Zhang J, Zhang M, Wang P (2015) Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy Environ Sci 8:3192–3197

    Article  CAS  Google Scholar 

  9. Kar S, Roy JK, Leszczynski J (2017) In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future. NPJ Computational Materials 3:1

    Article  CAS  Google Scholar 

  10. Seo KD, Song HM, Lee MJ, Pastore M, Anselmi C, De Angelis F, Kim HK (2011) Coumarin dyes containing low-band-gap chromophores for dye-sensitized solar cells. Dyes Pigments 90:304–310

    Article  CAS  Google Scholar 

  11. Han L, Wu H, Cui Y, Zu X, Ye Q, Gao J (2014) Synthesis and density functional theory study of novel coumarin-type dyes for dye sensitized solar cells. J Photochem Photobio A 290:54–62

    Article  CAS  Google Scholar 

  12. Hara K, Kurashige M, Ito S, Shinpo A, Suga S, Sayama K, Arakawa H (2003) Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem Commun 2:252–253

  13. Rudolph M, Yoshida T, Miura H, Schlettwein D (2014) Improvement of light harvesting by addition of a long-wavelength absorber in dye-sensitized solar cells based on ZnO and indoline dyes. J Phys Chem C 119:1298–1311

    Article  CAS  Google Scholar 

  14. Sobuś J, Karolczak J, Komar D, Anta JA, Ziółek M (2015) Transient states and the role of excited state self-quenching of indoline dyes in complete dye-sensitized solar cells. Dyes Pigments 113:692–701

    Article  CAS  Google Scholar 

  15. Prakasam M, Anbarasan PM (2016) Second order hyperpolarizability of triphenylamine based organic sensitizers: a first principle theoretical study. RSC Adv 6:75242–75250

    Article  CAS  Google Scholar 

  16. Wang ZS, Koumura N, Cui Y, Miyashita M, Mori S, Hara K (2009) Exploitation of ionic liquid electrolyte for dye-sensitized solar cells by molecular modification of organic-dye sensitizers. Chem Mater 21:2810–2816

    Article  CAS  Google Scholar 

  17. Chen R, Yang X, Tian H, Sun L (2007) Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells. J Photochem Photobiol A Chem 189(2):295–300

    Article  CAS  Google Scholar 

  18. Tian H, Yang X, Chen R, Pan Y, Li L, Hagfeldt A, Sun L (2007) Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem Commun 36:3741–3743

    Article  CAS  Google Scholar 

  19. Tian H, Yang X, Chen R, Zhang R, Hagfeldt A, Sun L (2008) Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. J Phys Chem C 112:11023–11033

    Article  CAS  Google Scholar 

  20. Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian TQ, Yanagida S (2004) Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem Mater 16:1806–1812

    Article  CAS  Google Scholar 

  21. Liang M, Chen J (2013) Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev 42:3453–3488

    Article  CAS  PubMed  Google Scholar 

  22. Ooyama Y, Harima Y (2012) Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells. Chem Phys Chem 13:4032–4080

    Article  CAS  PubMed  Google Scholar 

  23. Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499

    Article  CAS  Google Scholar 

  24. Mohr T, Aroulmoji V, Ravindran RS, Müller M, Ranjitha S, Rajarajan G, Anbarasan PM (2015) DFT and TD-DFT study on geometries, electronic structures and electronic absorption of some metal free dye sensitizers for dye sensitized solar cells. Spectrochimica Acta Part A: Mol Biomol Spect 135:1066–1073

    Article  CAS  Google Scholar 

  25. Luo C, Bi W, Deng S, Zhang J, Chen S, Li B, Chu J (2014) Indolo [3, 2, 1-jk] carbazole derivatives-sensitized solar cells: effect of π-bridges on the performance of cells. J Phys Chem C 118:14211–14217

    Article  CAS  Google Scholar 

  26. Ganesan P, Rajadurai VS, Sivanadanam J, Ponnambalam V, Rajalingam R (2013) Effect of electron withdrawing anchoring groups on the optoelectronic properties of pyrene sensitizers and their interaction with TiO2: a combined experimental and theoretical approach. J Photochem and Photobio A: Chem 271:31–44

    Article  CAS  Google Scholar 

  27. Klimeš J, Michaelides A (2012) Perspective: advances and challenges in treating Van der Waals dispersion forces in density functional theory. J Chem Phys 137:120901

    Article  CAS  PubMed  Google Scholar 

  28. Ruiz VG, Liu W, Zojer E, Scheffler M, Tkatchenko A (2012) Density-functional theory with screened Van der Waals interactions for the modeling of hybrid inorganic-organic systems. Phys Rev Lett 108:146103

    Article  CAS  PubMed  Google Scholar 

  29. Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional. What is Becke-3-Lyp? Chem Phys Lett 268:345–351

    Article  CAS  Google Scholar 

  30. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phy Let 393:51–57

    Article  CAS  Google Scholar 

  31. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  32. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin, AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford

  34. O'boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  PubMed  Google Scholar 

  35. Hodge PA, Power GA, Rabjohns M (1997) Synthesis of poly(anthracene-2,6-diyl) and a copolymer containing alternately anthracene-2,6-diyl and p-phenylene units. Chem Commun 1:73–74

  36. Jungsuttiwong S, Tarsang R, Sudyoadsuk T, Promarak V, Khongpracha P, Namuangruk S (2013) Theoretical study on novel double donor-based dyes used in high efficient dye-sensitized solar cells: the application of td-dft study to the electron injection process. Org Electron 14:711–722

    Article  CAS  Google Scholar 

  37. He J, Wu W, Hua J, Jiang Y, Qu S, Li J, Tian H (2011) Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance. J Mater Chem 21:6054–6062

    Article  CAS  Google Scholar 

  38. Mathew S, Imahori H (2011) Tunable, strongly-donating perylene photosensitizers for dye-sensitized solar cells. J Mater Chem 21:7166–7174

    Article  CAS  Google Scholar 

  39. Fitri A, Benjelloun AT, Benzakour M, McHarfi M, Hamidi M, Bouachrine M (2014) Theoretical investigation of new thiazolothiazole-based D-Pi-a organic dyes for efficient dye-sensitized solar cell. Spectrochim Acta Part A 124:646–654

    Article  CAS  Google Scholar 

  40. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  41. Happ B, Winter A, Hager MD, Schubert U (2012) Photogenerated avenues in macromolecules containing Re (I), Ru (II), Os (II), and Ir (III) metal complexes of pyridine-based ligands. Chem Soc Rev 41:2222–2255

    Article  CAS  PubMed  Google Scholar 

  42. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975

    Article  CAS  Google Scholar 

  43. Koopmans T (1933) Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1:104–113

    Article  CAS  Google Scholar 

  44. Senthilkumar P, Nithya C, Anbarasan PM (2014) Quantum chemical investigations on the effect of dodecyloxy chromophore in 4-amino stilbene sensitizer for DSSCs. Spectrochimica Acta Part A: Mol Biomol Spec 122:15–21

    Article  CAS  Google Scholar 

  45. Janjua MRSA, Khan MU, Bashir B, Iqbal MA, Song Y, Naqvi SAR, Khan ZA (2012) Effect of π-conjugation spacer (C C) on the first hyperpolarizabilities of polymeric chain containing polyoxometalate cluster as a side-chain pendant: a DFT study. Comput Theor Chem 994:34–40

    Article  CAS  Google Scholar 

  46. Arivazhagan M, Jeyavijayan S (2011) Vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 1,2-dichloro-4-nitrobenzene based on Hartree–Fock and DFT calculations. Spectrochim Acta A 79:376–383

    Article  CAS  Google Scholar 

  47. Peach MJ, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128:044118

    Article  CAS  PubMed  Google Scholar 

  48. Chattopadhyay D, Lastella S, Kim S, Papadimitrakopoulos F (2002) Length separation of zwitterion-functionalized single wall carbon nanotubes by GPC. J Am Chem Soc 124:728–729

    Article  CAS  PubMed  Google Scholar 

  49. Marinado T, Nonomura K, Nissfolk J, Karlsson MK, Hagberg DP, Sun L, Hagfeldt A (2009) How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 26:2592–2598

    Article  CAS  Google Scholar 

  50. Rühle S, Greenshtein M, Chen SG, Merson A, Pizem H, Sukenik CS, Zaban A (2005) Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J Phys Chem B 109:18907–18913

    Article  CAS  PubMed  Google Scholar 

  51. Chen SL, Yang LN, Li ZS (2013) How to design more efficient organic dyes for dye-sensitized solar cells? Adding more sp2-hybridized nitrogen in the triphenylamine donor. J Power Sources 223:86–93

    Article  CAS  Google Scholar 

  52. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Tachiya M (2004) Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  53. Preat J, Jacquemin D, Michaux C, Perpète EA (2010) Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem Phys 376:56–68

    Article  CAS  Google Scholar 

  54. Zhang J, Kan YH, Li HB, Geng Y, Wu Y, Su ZM (2012) How to design proper π-spacer order of the D-π-A dyes for DSSCs? A density functional response. Dyes Pigments 95:313–321

    Article  CAS  Google Scholar 

  55. Ding WL, Wang DM, Geng ZY, Zhao XL, Xu WB (2013) Density functional theory characterization and verification of high-performance indoline dyes with D–A–π–A architecture for dye-sensitized solar cells. Dyes Pigments 98:125–135

    Article  CAS  Google Scholar 

  56. Islam A, Sugihara H, Arakawa H (2003) Molecular design of ruthenium (II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J Photochem Photobiol A 158:131–138

    Article  CAS  Google Scholar 

  57. Daeneke T, Mozer AJ, Uemura Y, Makuta S, Fekete M, Tachibana Y, Spiccia L (2012) Dye regeneration kinetics in dye-sensitized solar cells. J Am Chem Soc 134:16925–16928

    Article  CAS  PubMed  Google Scholar 

  58. Robson KCD, Hu K, Meyer GJ, Berlinguette CP (2013) Atomic level resolution of dye regeneration in the dye-sensitized solar cell. J Am Chem Soc 135:1961–1971

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the learned referees for their useful and critical comments, which can improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anbarasan Ponnusamy Munusamy.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Highlights

• Four novel indolo[3,2,1-jk]carbazole-based dyes are designed by modifying electron acceptor.

• The lower Eg and larger absorption spectra will favors to light harvesting process.

• The better ICZA2-ICZA4 electron acceptor can be ascribed to enhanced LHE compare to IC-2.

Electronic supplementary material

ESM 1

(DOC 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammasi, A., Ponnusamy Munusamy, A. Highly efficient organic indolocarbazole dye in different acceptor units for optoelectronic applications—a first principle study. Struct Chem 29, 967–976 (2018). https://doi.org/10.1007/s11224-018-1073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1073-9

Keywords

Navigation