Skip to main content
Log in

Cation- and/or anion-directed reaction routes. Could the desolvation pattern of isostructural coordination compounds be related to their molecular structure?

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal and molecular structure of [Cu(ampf)(ClO4)(MeOH)2]ClO4, (1), ampf = N,N′-bis(4-acetyl-5-methylpyrazol-3-yl)formamidine, determined by X-ray crystallography is described and compared with the structurally related copper(II) complexes, formed under similar experimental conditions, using CuII salts with different anions. The complex formation is discussed in view of the structures of cobalt(II) and nickel(II) complexes with the same organic ligand and different anions, also formed under similar reaction conditions. Solvent molecules coordinated to the central atom play an important role in biologic systems. To get a better insight into the desolvation mechanism, in this study the desolvation pattern of 1 is presented. As in literature little attention is paid to the desolvation mechanism of solvate complexes, the desolvation mechanism of three, potentially biologically active isostructural pairs of octahedral NiII and CoII compounds with ampf and dmpc (3,5-dimethyl-1H-pyrazole-1-carboxamidine) ligands are evaluated and compared with the desolvation of 1. The results of the thermal data are discussed on the basis of structural features of the compounds. The minor differences in structures of the related compounds cannot be straightforwardly connected with the different solvent evaporation mechanism. To explain the differences found in desolvation pattern in isostructural CoII and NiII complexes the Jahn-Teller effect is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The repeatability of the measurements was also tested. Caution: Most of the perchlorates belong to explosives therefore special attention should be paid to protective measures. In the case of thermal measurements, the sample mass (<1 mg) and the heating rate (<20 °C min−1) should be kept low.

References

  1. Quirante J, Ruiz D, Gonzalez A, López C, Cascante M, Cortés R, Messeguer R, Calvis C, Baldomà L, Pascual A, Guérardel Y, Pradines B, Font-Bardía M, Calvet T, Biot J (2011) J Inorg Biochem 105:1720–1728

    Article  CAS  Google Scholar 

  2. Kaushik D, Kumar R, Ahmed Khan S, Chawla G (2012) Med Chem Res 21:3646–3655

    Article  CAS  Google Scholar 

  3. Mutti FG, Gullotti M, Casella L, Santagostini L, Pagliarin R, Andersson KK, Iozzie MF, Zoppellaro G (2011) Dalton Trans 40:5436–5457

    Article  CAS  Google Scholar 

  4. Kulkarni NV, Kamath A, Budagumpi S, Revankar VK (2011) J Mol Struct 1006:580–588

    Article  CAS  Google Scholar 

  5. Zheng Ch-y, Wang D-j, Fan L, Zheng J (2013) Struct Chem 24:705–711

    Article  CAS  Google Scholar 

  6. Ke F, Yuan Y-P, Qiu L-G, Shen Y-H, Xie A-J, Zhu J-F, Tian X-Y, Zhang L-D (2011) J Mater Chem 21:3843–3848

    Article  CAS  Google Scholar 

  7. Morley AD, Cook A, King S, Roberts B, Lever V, Weaver R, MacDonald C, Unitt J, Fagura M, Phillips V, Lewis R, Wenlock M (2011) Bioorg Med Chem Lett 21:6456–6460

    Article  CAS  Google Scholar 

  8. Singh UP, Kashyap S, Butcher RJ, Singh HJ, Mishra BK (2011) Struct Chem 22:931–941

    Article  CAS  Google Scholar 

  9. Gentschev P, Lüken M, Möller N, Rompel A, Krebs B (2001) Inorg Chem Commun 4:752–756

    Article  Google Scholar 

  10. Guo X, He D, Huang L, Liu L, Liu L, Yang H (2012) J Theor Comput Chem 995:17–23

    Article  CAS  Google Scholar 

  11. Solomon EI, Penfield WK, Wilcox DE (1983) Struct Bond 53:1–54

    Article  CAS  Google Scholar 

  12. Richardson DE, Reem RC, Solomon EI (1983) J Am Chem Soc 105:1781–7780

    Google Scholar 

  13. Dołęga A (2010) Coord Chem Rev 254:916–937

    Article  Google Scholar 

  14. Rezaei Behbehani G, Saboury AA, Fallah Baghery A, Abedini A (2008) J Therm Anal Calorim 93:479–483

    Article  CAS  Google Scholar 

  15. Kandeel M, Nabih M, Kitade Y (2013) J Therm Anal Calorim 111:1737–1741

    Article  CAS  Google Scholar 

  16. Ebrahimi KH, Hagedoorn P-L, Hagen WR (2012) PLoS One 7:e40287

    Article  CAS  Google Scholar 

  17. Behbehani GR, Saboury AA, Taherkhani A, Barzegar L, Mollaagazade A (2011) J Therm Anal Calorim 105:1081–1086

    Article  Google Scholar 

  18. Wyrzykowski D, Zarzeczańska D, Jacewicz D, Chmurzyński L (2011) J Therm Anal Calorim 105:1043–1047

    Article  CAS  Google Scholar 

  19. Behbehani GR, Saboury AA, Barzegar L, Zarean O, Abedini J, Payehghdr M (2011) Therm Anal Calorim 101:379–384

    Article  Google Scholar 

  20. Łyszczeka R, Rzączyńska Z, Kula A, Gładysz-Płaska A (2011) J Anal Appl Pyrolysis 92:347–354

    Article  Google Scholar 

  21. Fernandes RL, Takahashi PM, Frem RCG, Netto AVG, Mauro AE, Matos JR (2009) J Therm Anal Calorim 97:153–156

    Article  CAS  Google Scholar 

  22. Sun Sh-J, Wang J-F, Ren N, Zhang J-J, Ye H-M, Wang Sh-P (2012) Struct Chem 23:79–89

    Article  CAS  Google Scholar 

  23. Łyszczek R (2012) J Therm Anal Calorim 108:1101–1110

    Article  Google Scholar 

  24. Ponikvar-Svet M, Liebman JF (2011) Struct Chem 22:717–740

    Article  CAS  Google Scholar 

  25. Ponikvar-Svet M, Zieger DN, Liebman JF (2012) Struct Chem 23:1267–1280

    Article  CAS  Google Scholar 

  26. Que L (ed) (2000) Physical methods in bioinorganic chemistry: spectroscopy and magnetism. University Science Books, Sausalito

    Google Scholar 

  27. Holló B, Leovac VM, Bombicz P, Kovács A, Jovanović LS, Bogdanović G, Kojić V, Divjaković V, Joksović MD, Mészáros Szécsényi K (2010) Aust J Chem 63:1557–1564

    Article  Google Scholar 

  28. Holló B, Jašo V, Leovac VM, Divjaković V, Kovács A, Mészáros Szécsényi K (2013) J Coord Chem 66:453–463

    Article  Google Scholar 

  29. Neela YI, Mahadevi AS, Sastry GN (2013) Struct Chem 24:637–650

    Article  CAS  Google Scholar 

  30. Agilent Technologies (2011) CrysAlisPro Software system, Version 1.171.34.36

  31. Altomare A, Cascarano G, Giacovazzo C, Gualardi A (1993) J Appl Cryst 26:343

    Article  Google Scholar 

  32. Sheldrick GM (2008) Acta Cryst A64:112

    Google Scholar 

  33. Hübschle CB, Sheldrick GM, Dittrich B (2011) J Appl Cryst 44:1281

    Article  Google Scholar 

  34. Farrugia LJ (1997) J Appl Cryst 30:565

    Article  CAS  Google Scholar 

  35. Spek AL (2009) Acta Cryst D65:148

    Google Scholar 

  36. Leovac VM, Tomić ZD, Kovács A, Joksović MD, Jovanović LS, Mészáros Szécsényi K (2008) J Organomet Chem 693:77–86

    Article  CAS  Google Scholar 

  37. Mészáros Szécsényi K, Leovac VM, Petković R, Jaćimović ŽK, Pokol G (2007) J Therm Anal Calorim 90:899–902

    Article  Google Scholar 

  38. Jaćimović ŽJ, Leovac V, Mészáros Szécsényi K, Howard JAK, Radosavljević Evans I (2004) Acta Cryst C60:m467–m470

    Google Scholar 

  39. Hargittai I (2011) Struct Chem 22:3–10

    Article  CAS  Google Scholar 

  40. Tamer Ö, Sarıboğa B, Uçar I (2012) Struct Chem 23:659–670

    Article  CAS  Google Scholar 

  41. Boča M, Jameson RF, Linert W (2011) Coord Chem Rev 255:290–317

    Article  Google Scholar 

  42. Içbudak H, Adiyaman E, Çetin N (2006) Transit Metal Chem 31:666–672

    Article  Google Scholar 

  43. Içbudak H, Bulut A, Çetin N, Kazak C (2005) Acta Cryst C61:m1–m3

    Google Scholar 

  44. Valle-Bourrouet G, Pineda LW, Falvello LR, Lusar R, Weyhermueller T (2007) Polyhedron 26:4470–4478

    Article  CAS  Google Scholar 

  45. Tsukerblat B, Klokishner S, Palii A (2009) In: Köppel H, Yarkony DR, Barenzen H (eds) The Jahn-Teller effect: fundamentals and implications for physics and chemistry. Springer, Berlin

    Google Scholar 

  46. Begum Y, Wright AJ (2012) J Mater Chem 22:21110–21116

    Article  CAS  Google Scholar 

  47. Shevchenko VA (2012) Struct Chem 23:1089–1101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Projects No. ON172014 and III45022) and Secretariat for Science and Technological Development, Autonomous Province of Vojvodina, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Mészáros Szécsényi.

Electronic supplementary material

CCDC 922242 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge at www.ccdc.cam.ac.uk.

Supplementary material 1 (DOC 189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holló, B., Rodić, M.V., Bera, O. et al. Cation- and/or anion-directed reaction routes. Could the desolvation pattern of isostructural coordination compounds be related to their molecular structure?. Struct Chem 24, 2193–2201 (2013). https://doi.org/10.1007/s11224-013-0270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0270-9

Keywords

Navigation