Skip to main content
Log in

Analyzing coordination preferences of Mg2+ complexes: insights from computational and database study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Solvation of metal cations has attracted substantial interest on account of its functional importance in biological systems. In the present study, we undertake a comprehensive analysis of hydrated complexes of Mg2+ with up to 20 water molecules using MP2/cc-pVTZ and density functional theory (DFT) calculations. The effect of first, second, and higher solvation shells on magnesium coordination has been systematically analyzed by considering Mg2+(H2O) n complexes. Numerous competing conformations for each of the metal ion complexes have been explored and the minima structures obtained were further analyzed. The study probes the relative preferences among various coordination numbers and unambiguously establishes that coordination number 6 is the most optimal choice. The relative abundance of Mg2+ ion and its coordination with water and other ligands has been analyzed in the Protein Data Bank and Cambridge Structural Database. It is noted that the M–O distance and charge transfer to metal ion increase as the number of solvating water molecules increases. The computational studies are in excellent agreement with the experimental observations, and provide support to multiple coordinate site preferences for Mg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pyle MJ (2002) Biol Inorg Chem 7:679–690

    Article  CAS  Google Scholar 

  2. DeRose VJ (2003) Curr Opin Struct Biol 13:317–324

    Article  CAS  Google Scholar 

  3. Wang T, Shao X, Cai W, Xue Y, Wang S, Feng X (2011) Phys Chem Chem Phys 13:1140–1151

    Article  CAS  Google Scholar 

  4. Dudev T, Cowan JA, Lim C (1999) J Am Chem Soc 121:7665–7673

    Article  CAS  Google Scholar 

  5. Skinner JJ (2010) Science 328:985–986

    Article  CAS  Google Scholar 

  6. Tielrooij KJ, Garcia-Araez N, Bonn M, Bakker HJ (2010) Science 328:1006–1009

    Article  CAS  Google Scholar 

  7. Merrill GN, Webb SP, Bivin DB (2003) J Phys Chem A 107:386–396

    Article  CAS  Google Scholar 

  8. Bock CW, Katz AK, Markham GD, Glusker JP (1999) J Am Chem Soc 121:7360–7372

    Article  CAS  Google Scholar 

  9. Adrian-Scotto M, Mallet G, Vasilescu D (2005) J Mol Struct Theochem 728:231–242

    Article  CAS  Google Scholar 

  10. Pavlov M, Siegbahn PEM, Sandstrom M (1998) J Phys Chem A 102:219–228

    Article  CAS  Google Scholar 

  11. Pye CC, Rudolph WW (1998) J Phys Chem A 102:9933–9943

    Article  CAS  Google Scholar 

  12. Markham GD, Glusker JP, Bock CL, Trachtman M, Bock CW (1996) J Phys Chem 100:3488–3497

    Article  CAS  Google Scholar 

  13. Markham GD, Glusker JP, Bock CW (2002) J Phys Chem B 106:5118–5134

    Article  CAS  Google Scholar 

  14. Glendening ED, Feller D (1996) J Phys Chem 100:4790–4797

    Article  CAS  Google Scholar 

  15. Beyer M, Williams ER, Bondybey VE (1999) J Am Chem Soc 121:1565–1573

    Article  CAS  Google Scholar 

  16. Rao JS, Dinadayalane TC, Leszczynski J, Sastry GN (2008) J Phys Chem A 112:12944–12953

    Article  CAS  Google Scholar 

  17. Neela YI, Mahadevi AS, Sastry GN (2012) Struct Chem. doi:10.1007/s11224-012-0032-0

    Google Scholar 

  18. Reddy AS, Zipse H, Sastry GN (2007) J Phys Chem B 111:11546–11553

    Article  CAS  Google Scholar 

  19. Rao JS, Zipse H, Sastry GN (2009) J Phys Chem B 113:7225–7236

    Article  CAS  Google Scholar 

  20. Vijay D, Sastry GN (2008) Phys Chem Chem Phys 10:582–590

    Article  CAS  Google Scholar 

  21. Rodriguez-Cruz SE, Williams ER (2001) J Am Soc Mass Spectrom 12:250–257

    Article  CAS  Google Scholar 

  22. Witwicki M, Jezierska J (2011) J Phys Chem B 115:3172–3184

    Article  CAS  Google Scholar 

  23. Vijay D, Sastry GN (2010) Chem Phys Lett 485:235–242

    Article  CAS  Google Scholar 

  24. Vijay D, Sastry GN (2006) J Phys Chem A 110:10148–10154

    Article  CAS  Google Scholar 

  25. Okai N, Ishikawa H, Fuke K (2005) Chem Phys Lett 415:155–160

    Article  CAS  Google Scholar 

  26. Neff D, Simons J (2008) Int J Mass Spectrom 277:166–174

    Article  CAS  Google Scholar 

  27. Reinhard BM, Niedner-Schatteburg G (2002) Phys Chem Chem Phys 4:1471–1477

    Article  CAS  Google Scholar 

  28. Siu C, Liu Z (2005) Phys Chem Chem Phys 7:1005–1013

    Article  CAS  Google Scholar 

  29. Reinhard BM, Niedner-Schatteburg G (2003) Phys Chem Chem Phys 5:1970–1980

    Article  CAS  Google Scholar 

  30. Reinhard BM, Lagutschenkov A, Niedner-Schatteburg G (2004) Phys Chem Chem Phys 6:4268–4275

    Article  CAS  Google Scholar 

  31. Neela YI, Mahadevi AS, Sastry GN (2010) J Phys Chem B 114:17162–17171

    Article  CAS  Google Scholar 

  32. Mahadevi AS, Neela YI, Sastry GN (2011) Phys Chem Chem Phys 13:15211–15220

    Article  CAS  Google Scholar 

  33. Mahadevi AS, Sastry GN (2011) J Phys Chem B 115:703–710

    Article  CAS  Google Scholar 

  34. Sharma B, Rao JS, Sastry GN (2011) J Phys Chem A 115:1971–1984

    Article  CAS  Google Scholar 

  35. Benda L, Schneider B, Sychrovsk V (2011) J Phys Chem A 115:2385–2395

    Article  CAS  Google Scholar 

  36. Ohtaki H, Radnai T (1993) Chem Rev 93:1157–1204

    Article  CAS  Google Scholar 

  37. Barran PE, Walker NR, Stace AJ (2000) J Chem Phys 112:6173–6177

    Article  CAS  Google Scholar 

  38. Walker N, Dobson MP, Wright RR, Barran PE, Murrell JN, Stace AJ (2000) J Am Chem Soc 122:11138–11145

    Article  CAS  Google Scholar 

  39. Bush MF, O’Brien JT, Prell JS, Wu C, Saykally RJ, Williams ER (2009) J Am Chem Soc 131:13270–13277

    Article  CAS  Google Scholar 

  40. Callahan KM, Casillas-Ituarte NN, Xu M, Roeselová M, Allen HC, Tobias DJ (2010) J Phys Chem A 114:8359–8368

    Article  CAS  Google Scholar 

  41. Peschke M, Blades AT, Kebarle P (1998) J Phys Chem A 102:9978–9985

    Article  CAS  Google Scholar 

  42. Rodriguez-Cruz SE, Jockusch RA, Williams ER (1999) J Am Chem Soc 121:1986–1987

    Article  CAS  Google Scholar 

  43. Rodriguez-Cruz SE, Jockusch RA, Williams ER (1999) J Am Chem Soc 121:8898–8906

    Article  CAS  Google Scholar 

  44. Cappa CD, Smith JD, Messer BM, Cohen RC, Saykally RJ (2006) J Phys Chem B 110:5301–5309

    Article  CAS  Google Scholar 

  45. Prell JS, O’Brien JT, Williams ER (2011) J Am Chem Soc 133:4810–4818

    Article  CAS  Google Scholar 

  46. Obst S, Bradaczek H (1996) J Phys Chem 100:15677–15687

    Article  CAS  Google Scholar 

  47. Hannongbua S (1997) J Chem Phys 106:6076–6081

    Article  CAS  Google Scholar 

  48. Martínez JM, Pappalardo RR, Marcos ES (1999) J Am Chem Soc 121:3175–3184

    Article  Google Scholar 

  49. Ikeda T, Boero M, Terakura K (2007) J Chem Phys 127:074503–074508

    Article  Google Scholar 

  50. Lightstone FC, Schwegler E, Hood RQ, Gygi F, Galli G (2001) Chem Phys Lett 343:549–555

    Article  CAS  Google Scholar 

  51. Piquemal J, Perera L, Cisneros GA, Ren P, Pedersen LG, Darden TA (2006) J Chem Phys 125:054511–054517

    Article  Google Scholar 

  52. Tommaso DD, de Leeuw NH (2010) Phys Chem Chem Phys 12:894–901

    Article  Google Scholar 

  53. Tongraar A, Sagarik K, Rode BM (2001) J Phys Chem B 105:10559–10564

    Article  CAS  Google Scholar 

  54. Hofer TS, Tran HT, Schwenk CF, Rode BM (2004) J Comput Chem 25:211–217

    Article  CAS  Google Scholar 

  55. Tongraar A, Rode BM (2001) Chem Phys Lett 346:485–491

    Article  CAS  Google Scholar 

  56. Lu Y, Mei Y, Zhang JZH, Zhang D (2010) J Chem Phys 132:131101–131104

    Article  Google Scholar 

  57. Callahan KM, Casillas-Ituarte NN, Roeselová M, Allen HC, Tobias DJ (2010) J Phys Chem A 114:5141–5148

    Article  CAS  Google Scholar 

  58. Bernal-Uruchurtu MI, Ortega-Blake I (1995) J Chem Phys 103:1588–1598

    Article  CAS  Google Scholar 

  59. Tongraar A, Rode BM (2005) Chem Phys Lett 409:304–309

    Article  CAS  Google Scholar 

  60. Yang Z, Li X (2005) J Chem Phys 123:094507–094510

    Article  Google Scholar 

  61. Tommaso DD, de Leeuw NH (2010) Cryst Growth Des 10:4292–4302

    Article  Google Scholar 

  62. Reddy AS, Sastry GM, Sastry GN (2007) Proteins: Struct Funct Bioinf 67:1179–1184

    Article  CAS  Google Scholar 

  63. Bindu PH, Sastry GM, Murty US, Sastry GN (2004) Biochem Biophys Res Commun 319:312–320

    Article  CAS  Google Scholar 

  64. Bindu PH, Sastry GM, Sastry GN (2004) Biochem Biophys Res Commun 320:461–467

    Article  CAS  Google Scholar 

  65. Chourasia M, Sastry GM, Sastry GN (2005) Biochem Biophys Res Commun 336:961–966

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, ReVision C.1. Gaussian, Inc, Pittsburgh, PA

  67. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  68. Rotzinger FP (2005) J Phys Chem B 109:1510–1527

    Article  CAS  Google Scholar 

  69. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535–542

    Article  CAS  Google Scholar 

  70. Allen FH (2002) Acta Crystallogr B 58:380–388

    Article  Google Scholar 

Download references

Acknowledgments

DST (Swarnajayanthi fellowship to G.N.S., INSPIRE fellowship to Y.I.N., and women scientist scheme to A.S.M.) is acknowledged. CSIR is thanked for financial assistance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Narahari Sastry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC 676 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neela, Y.I., Mahadevi, A.S. & Sastry, G.N. Analyzing coordination preferences of Mg2+ complexes: insights from computational and database study. Struct Chem 24, 637–650 (2013). https://doi.org/10.1007/s11224-012-0113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0113-0

Keywords

Navigation