Skip to main content
Log in

A combined crystallographic, spectroscopic, antimicrobial, and computational study of novel dipicolinate copper(II) complex with 2-(2-hydroxyethyl)pyridine

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Novel dipicolinate complex of copper(II) ion, [Cu(hepy)(dpc)H2O] [hepy: 2-(2-hydroxyethyl)pyridine; dpc: dipicolinate or pyridine-2,6-dicarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. [Cu(hepy)(dpc)H2O] was investigated for antimicrobial activity against a fungal strain, Gram-positive, and Gram-negative bacteria. The compound was found to be active against of all microorganisms (MIC values 512–1,024 μg mL−1). The mixed-ligand copper(II) complex was satisfactorily modeled by calculations based on following hybrid density functionals: LSDA, BPV86, B3LYP, B3PW91, MPW1PW91, PBEPBE, and HCTH. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, calculated data show that the predicted geometries can reproduce the structural parameters. The performance of these functional approaches for the calculation of electron paramagnetic resonance hyperfine coupling constant Cu2+ ion was evaluated critically by comparison with experimental data. The g values obtained from density functional theory (DFT) calculations were in compatible with the experimental results, whereas the A values were not. Electronic structure of the complex was calculated using time-dependent DFT method with the polarizable continuum model. Descriptions of frontier molecular orbitals and the relocation of the electron density of the compound were determined. Because the calculations of vibrations were carried out in gaseous phase there were shifts in vibration frequencies above 3,000 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Udo S (1936) J Agric Chem Soc Jpn 12:386–394

    CAS  Google Scholar 

  2. Edgecombe KE, Weaver DF, Smith VH (1994) Can J Chem 72:1388–1403

    Article  CAS  Google Scholar 

  3. Hameka HF, Jensen JO, Jensen JL, Merrow CN, Vlahacos CP (1996) J Mol Struct (Theochem) 365:131–141

    Article  CAS  Google Scholar 

  4. Singh RP (1987) Curr Sci 56:1232–1234

    CAS  Google Scholar 

  5. Janssen FW, Lund AJ, Anderson LE (1958) Science 127:26–27

    Article  CAS  Google Scholar 

  6. Murakami K, Tanemura Y, Yoshino M (2003) J Nutr Biochem 14:99–103

    Article  CAS  Google Scholar 

  7. Couper L, Mckendrick JE, Robins DJ, Chrystal EJT (1994) Bioorg Med Chem Lett 4:2267–2272

    Article  Google Scholar 

  8. Kazuhiro Y, NorikoY, Tadayasu F (1994) Eur Patent EP0603165

  9. Burdock GA (1996) Ancyclopedia of food and color additives, vol 3. CRC Pres, Boca Raton

    Google Scholar 

  10. Kirillova MV, Da Silva MFCG, Kirillov AM, Da Silva JJRF, Pombeiro AJL (2007) Inorg Chim Acta 360:506–512

    Article  CAS  Google Scholar 

  11. Park H, Lough AJ, Kim JC, Jeong MH, Kang YS (2007) Inorg Chim Acta 360:2819–2823

    Article  CAS  Google Scholar 

  12. Moghimi A, Moosavi SM, Kordestani D, Maddah B, Shamsipur M, Aghabozorg H, Ramezanipour F, Kickelbick G (2007) J Mol Struct 828:38–45

    Article  CAS  Google Scholar 

  13. Wen YH, Cheng JK, Feng YL, Zhang J, Li ZJ, Yao YG (2005) Inorg Chim Acta 356:3347

    Article  Google Scholar 

  14. Uçar İ, Bulut A, Büyükgüngör O (2005) Acta Crystallogr C61:m479–m482

    Google Scholar 

  15. Uçar İ, Bulut I, Karabulut B, Bulut A, Büyükgüngör O (2007) J Mol Struct 834–836:336–344

    Article  Google Scholar 

  16. Saladino AC, Larsen SC (2005) Catal Today 105:122–133

    Article  CAS  Google Scholar 

  17. Almeida KJ, Rinkevicius Z, Hugosson HW, Ferreira AC, Agren H (2007) Chem Phys 332:176–187

    Article  Google Scholar 

  18. Clinical and Laboratory Standards Institute (CLSI) (2006) Methods of dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, M7-A7, 7th edn. CLSI, Wayne

    Google Scholar 

  19. National Committee for Clinical Laboratory Standards (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard M27-A2, 2nd edn. NCCLS, Wayne

    Google Scholar 

  20. Stoe & Cie X-AREA (Version 1.18) and X-RED (Version 1.04), Stoe & Cie, Dermstadt, 2002

  21. Altomera A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Crystallogr 32:115

    Article  Google Scholar 

  22. Sheldric GM (1997) SHELXL97. University of Gottingen, Gottingen

    Google Scholar 

  23. Brandenburg K (2005) DIAMOND, Demonstrated Version. Crystal Impact GbR, Bonn

    Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, J.M. Millam JM, S.S. Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al- Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh

  25. Dennington R II, Keith T, Milliam J (2007) GaussView Version 4.1.2. Semichem Inc., Shawnee Mission

    Google Scholar 

  26. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  27. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  28. Schlegel HB (1982) J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  29. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

    Google Scholar 

  31. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Peterson MR, Singh DJ, Fiolhais C (1992) Phys Rev B46:6671–6687

    Google Scholar 

  33. Perdew JP, Burke K, Wang Y (1996) Phys Rev B54:16533–16539

    Google Scholar 

  34. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  35. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1399

    Article  CAS  Google Scholar 

  38. Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum, New York

    Google Scholar 

  39. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264–6271

    Article  CAS  Google Scholar 

  40. Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274–4298

    Article  CAS  Google Scholar 

  41. Menon AS, Radom L (2008) J Phys Chem A 112:13225–13230

    Article  CAS  Google Scholar 

  42. Dodds JL, McWeeny R, Sadlej AJ (1980) Mol Phys 41:1419

    Article  Google Scholar 

  43. Wolinski K, Hilton JF, Pulay P (1999) J Chem Phys 111:8251

    Article  Google Scholar 

  44. Kim KJ, Lee JH, Lee SH, Magn J (2004) Magn Mater 279:173–177

    Article  CAS  Google Scholar 

  45. Abada GA, Mutakainen I, Turpeinen U, Reedjik J (2002) Acta Cryst E 58:m55–m57

    Article  Google Scholar 

  46. Uçar İ, Bulut B, Bulut A, Karadağ A (2009) Struct Chem 20:825–838

    Article  Google Scholar 

  47. Uçar İ, Bulut A, Büyükgüngör O (2007) J Phys Chem Solids 68:2271–2277

    Article  Google Scholar 

  48. Yenikaya C, Poyraz M, Sarı M, Demirci F, İlkimen H, Büyükgüngör O (2009) Polyhedron 28:3526–3532

    Article  CAS  Google Scholar 

  49. Du M, Cai H, Zhao X-J (2006) Inorg Chim Acta 359:673–679

    Article  CAS  Google Scholar 

  50. Perry JJ, McManus GJ, Zaworotko MJ (2004) J Chem Cryst 34:877–881

    Article  CAS  Google Scholar 

  51. Mao L, Wang Y, Qi Y, Cao M, Hu C (2004) J Mol Struct 688:197–201

    Article  CAS  Google Scholar 

  52. Lah N, Leban I (2010) Struct Chem 21:263–267

    Article  CAS  Google Scholar 

  53. Cheng S-C, Wei H-H (2002) Inorg Chim Acta 340:105–113

    Article  CAS  Google Scholar 

  54. Malkina OL, Vaara J, Schimmelpfenning B, Munzarova M, Malkin VG, Kaupp M (2000) J Am Chem Soc 122:9206–9218

    Article  CAS  Google Scholar 

  55. Engstrom M, Minaev B, Vahtras O, Agren H (1998) Chem Phys 237:149–158

    Article  CAS  Google Scholar 

  56. Neese F (2005) J Chem Phys 122:34107–34119

    Article  Google Scholar 

  57. Gorelsky SI (2010) SWizard Program Revision 4.5, University of Ottawa, Ottawa, Canada. http://www.sg.chem.net/

  58. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  59. Carmona P (1980) Spectrochim Acta A 36:705–712

    Article  Google Scholar 

  60. Van Albada GA, Gorter S, Reedijk J (1999) Polyhedron 18:1821–1824

    Article  Google Scholar 

  61. Robinson SD, Uttley MF (1973) J Chem Soc Dalton Trans 18:1912–1920

    Article  Google Scholar 

  62. Topacli A, Bayarı S (1999) Spectrochim Acta A 55:1389–1394

    Article  Google Scholar 

  63. Topacli A, Akyüz S (1995) Spectrochim Acta A 51:633–641

    Article  Google Scholar 

  64. Kolomenskii AA, Schuessler HA (2005) Spectrochim Acta A 61:647–651

    Article  CAS  Google Scholar 

  65. McCann K, Laane J (2008) J Mol Struct 890:346–358

    Article  CAS  Google Scholar 

  66. Gonzalez-Baro AC, Castellano EE, Piro OE, Parajon-Costa BS (2005) Polyhedron 24:49–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Uçar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamer, Ö., Sarıboğa, B. & Uçar, İ. A combined crystallographic, spectroscopic, antimicrobial, and computational study of novel dipicolinate copper(II) complex with 2-(2-hydroxyethyl)pyridine. Struct Chem 23, 659–670 (2012). https://doi.org/10.1007/s11224-011-9910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9910-0

Keywords

Navigation