Skip to main content
Log in

Hydrogen bonding interactions between N,N-dimethylformamide and cysteine: DFT studies of structures, properties, and topologies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The hydrogen bonding interactions between cysteine and N,N-dimethylformamide (DMF) were studied at the extended hybrid functional DFT-X3LYP/6-311++G(d,p) level regarding their geometries, energies, vibrational frequencies, and topological features of the electron density. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses were employed to elucidate the interaction characteristics in the complexes. The results show that two intermolecular hydrogen bonds (H-bonds) are formed in one complex except few complexes with one intermolecular H-bond. The H-bonds involving O atom of DMF as H-bond acceptor usually are red-shifting H-bonds, while the blue-shifting H-bond usually involve methyl of DMF or methenyl of cysteine moiety as H-bond donors. Both hydrogen bonding interaction and structural deformation play important roles in the relative stabilities of the complexes. Due to the π-bond cooperativity, the strongest H-bond is formed between hydroxyl of cysteine moiety and O atom of DMF, however, the serious deformation counteract the hydrogen bonding interaction to a great extent. The complex involves a stronger hydrogen bonding interaction as well as the smaller deformation is the most stable one. The electron density (ρb) as well as its Laplacian (∇2ρb) at the H-bond critical point predicted by QTAIM is strongly correlated with the H-bond structural parameter (δR H···Y) and the second-perturbation energies E(2) in the NBO scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sijpkes AH, Staneke PO, Somsen G (1990) Thermochim Acta 167:65

    Article  CAS  Google Scholar 

  2. Korolev VP, Kustov AV, Bekeneva AV (2007) Russ J Gen Chem 77:1232

    Article  CAS  Google Scholar 

  3. Kustov AV, Bekeneva AV, Korolev VP (2008) Russ J Gen Chem 78:101

    CAS  Google Scholar 

  4. Ren XH, Wang HJ (2009) J Solut Chem 38:303

    Article  CAS  Google Scholar 

  5. Xu X, Zhang QS, Muller RP, Goddard WA (2005) J Chem Phys 122:014105

    Article  Google Scholar 

  6. Xu X, Goddard WA (2004) Proc Natl Acad Sci USA 101:2673

    Article  CAS  Google Scholar 

  7. Su JT, Xu X, Goddard WA (2004) J Phys Chem A 108:10518

    Article  CAS  Google Scholar 

  8. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397

    Article  CAS  Google Scholar 

  9. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:5121

    Article  CAS  Google Scholar 

  10. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  11. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  12. Johnson ER, Mackie ID, DiLabio GA (2009) J Phys Org Chem 22:1127

    Article  CAS  Google Scholar 

  13. Huang ZG, Yu L, Dai YM, Wang HK (2010) Theochem J Mol Struct 960(1–3):98

    Article  CAS  Google Scholar 

  14. Mandal A, Prakash M, Kumar RM, Parthasarathi R, Subramanian V (2010) J Phys Chem A 114:2250

    Article  CAS  Google Scholar 

  15. Rai AK, Fei WX, Lu ZW, Lin ZJ (2009) Theor Chem Acc 124:37

    Article  CAS  Google Scholar 

  16. Rao L, Ke HW, Fu G, Xu X, Yan YJ (2009) J Chem Theory Comput 5:86

    Article  CAS  Google Scholar 

  17. Riley KE, Pitonak M, Cerny J, Hobza P (2010) J Chem Theory Comput 6:66

    Article  CAS  Google Scholar 

  18. Sun YP, Ren XH, Wang HJ, Shan YY, Xing LJ (2009) Struct Chem 20:213

    Article  CAS  Google Scholar 

  19. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  20. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  21. Ke HW, Rao L, Xu X, Yan YJ (2008) J Theor Comput Chem 7:889

    Article  CAS  Google Scholar 

  22. Santra B, Michaelides A, Scheffler M (2007) J Chem Phys 127:184104

    Article  Google Scholar 

  23. Varadwaj PR, Marques HM (2010) Phys Chem Chem Phys 12:2126

    Article  CAS  Google Scholar 

  24. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  25. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford, UK

    Google Scholar 

  26. Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, London

    Google Scholar 

  27. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to dna and drug design. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  28. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  29. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) J Chem Phys 84:5687

    Article  CAS  Google Scholar 

  30. Frisch MJ, Truchs GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian03. Gaussian, Inc., Pittsburgh PA

  31. Biegler-Ko¨nig F (2000) AIM2000. University of Applied Sciences, Bielefeld, Germany

  32. Wilke JJ, Lind MC, Schaefer HF, Csaszar AG, Allen WD (2009) J Chem Theory Comput 5:1511

    Article  CAS  Google Scholar 

  33. Dobrowolski JC, Rode JE, Sadlej J (2007) J Mol Struct (Theochem) 810:129

    Article  CAS  Google Scholar 

  34. Dobrowolski JC, Jamroz MH, Kolos R, Rode JE, Sadlej J (2007) ChemPhysChem 8:1085

    Article  CAS  Google Scholar 

  35. Pecul M (2006) Chem Phys Lett 418:1

    Article  CAS  Google Scholar 

  36. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  37. Tian SX (2004) J Phys Chem B 108:20388

    Article  CAS  Google Scholar 

  38. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  39. Hannachi Y, Silvi B, Bouteiller Y (1992) J Chem Phys 97:1911

    Article  CAS  Google Scholar 

  40. Mo O, Yanez M, Elguero J (1992) J Chem Phys 97:6628

    Article  CAS  Google Scholar 

  41. Frank HS, Wen WY (1957) Discuss Faraday Soc 24:133

    Article  Google Scholar 

  42. Bankiewicz B, Wojtulewski S, Grabowski SJ (2010) J Org Chem 75:1419

    Article  CAS  Google Scholar 

  43. Estevez L, Otero N, Mosquera RA (2009) J Phys Chem A 113:11051

    Article  CAS  Google Scholar 

  44. Huang ZG, Yu L, Dai YM. doi:10.1002/qua.22772.

  45. Huang ZG, Dai YM, Yu L (2010) Struct Chem 21:863

    Article  CAS  Google Scholar 

  46. Huang ZG, Yu L, Dai YM (2010) Struct Chem 21:855

    Article  CAS  Google Scholar 

  47. Huang ZG, Yu L, Dai YM (2010) Struct Chem 21:565

    Article  CAS  Google Scholar 

  48. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  49. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835

    Article  CAS  Google Scholar 

  50. Pacios LF (2004) J Phys Chem A 108:1177

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by Tianjin Science and Technology Development Fund Projects in Colleges and Universities (No. 20080504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguo Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Yu, L., Dai, Y. et al. Hydrogen bonding interactions between N,N-dimethylformamide and cysteine: DFT studies of structures, properties, and topologies. Struct Chem 22, 57–65 (2011). https://doi.org/10.1007/s11224-010-9689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9689-4

Keywords

Navigation