Skip to main content
Log in

Hydrogen-bonding interaction in a complex of amino acid with urea studied by DFT calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Theoretical studies on hydrogen-bonded complexes between amino acids (glycine, alanine, and leucine) and urea in gas phase have been carried out using density functional theory (DFT) and ab initio methods at the B3LYP/6-311++g** and MP2/6-311++g** theory levels. The structures, binding energy, Chelpg (charges from electrostatic potentials using a grid-based method) charge distribution, and bond characteristics of the mentioned complexes were calculated. Urea is a good H-bond donor and an excellent receptor for highly electronegative atoms like O and N, through the formation of two or more hydrogen bonds. The NH2 and COOH groups of amino acids can form several different types of H-bonds with urea molecular, as well as CαH and alkyl side chains. The calculated high binding energy also suggests multiple H-bonds formed in one complex. The OH···O contact is the strongest hydrogen bond interaction with H···O separation around 1.65 Å and its relevant angle close to 176°. The closely linear amide H-bonds NH···O and OH···N strongly stabilize the amino acid–urea complex with H···O separation between 1.89 and 2.38 Å. The weaker CH···O/N H-bonds are also discussed as significant interaction in biological systems involving amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grdadolnik J, Marechal Y (2002) J Mol Struct 615:177–189. doi:10.1016/S0022-2860(02)00214-4

    Article  CAS  Google Scholar 

  2. Mountain RD, Thirumalai D (2003) J Am Chem Soc 125:1950–1957. doi:10.1021/ja020496f

    Article  CAS  Google Scholar 

  3. Klimov DK, Straub JE, Thirumalai D (2004) Proc Natl Acad Sci USA 101:14760–14765. doi:10.1073/pnas.0404570101

    Article  CAS  Google Scholar 

  4. Chitra R, Smith PE (2002) J Phys Chem B 106:1491–1500. doi:10.1021/jp011462h

    Article  CAS  Google Scholar 

  5. Caballero-Herrera A, Nordstrand K, Berndt KD, Nilsson L (2005) Biophys J 89:842–857. doi:10.1529/biophysj.105.061978

    Article  CAS  Google Scholar 

  6. Oostenbrink C, van Gunsteren WF (2005) Phys Chem Chem Phys 7:53–58. doi:10.1039/b413167c

    Article  CAS  Google Scholar 

  7. Lee ME, van der Vegt NFA (2006) J Am Chem Soc 128:4948–4949. doi:10.1021/ja058600r

    Article  CAS  Google Scholar 

  8. O’Brien EP, Dima RI, Brooks B, Thirumalai D (2007) J Am Chem Soc 129:7346–7353. doi:10.1021/ja069232+

    Article  Google Scholar 

  9. Courtenay ES, Capp MW, Record TMJ (2001) Protein Sci 10:2485–2497. doi:10.1110/ps.ps.20801

    Article  CAS  Google Scholar 

  10. Auton M, Bolen WD (2005) Proc Natl Acad Sci USA 102:15065–15068. doi:10.1073/pnas.0507053102

    Article  CAS  Google Scholar 

  11. Moglich A, Krieger F, Kiefhaber T (2005) J Mol Biol 345:153–162. doi:10.1016/j.jmb.2004.10.036

    Article  Google Scholar 

  12. Bennion BJ, Daggett V (2003) Proc Natl Acad Sci USA 100:5142–5147. doi:10.1073/pnas.0930122100

    Article  CAS  Google Scholar 

  13. Tsai J, Gerstein M, Levitt MJ (1996) Chem Phys 104:9417–9430

    CAS  Google Scholar 

  14. Zou Q, Habermann-Rottinghaus SM, Murphy KP (1998) Proteins 31:107–115. doi:0.1002/(SICI)1097-0134(19980501)31:2<107::AID-PROT1>3.0.CO;2-J1

    Article  CAS  Google Scholar 

  15. Ikeguchi M, Nakamura S, Shimizu K (2001) J Am Chem Soc 123:677–682. doi:10.1021/ja002064f

    Article  CAS  Google Scholar 

  16. Timasheff SN, Xie G (2003) Biophys Chem 105:421–448. doi:10.1016/S0301-4622(03)00106-6

    Article  CAS  Google Scholar 

  17. Massimo B, Laura De B, David EG, Luigi F, Maurizio L, Enrico M (2004) J Am Chem Soc 126:16507–16514. doi:10.1021/ja045936c

    Article  Google Scholar 

  18. Martin CS, Helmut G (2007) J Am Chem Soc 129:16126–16131. doi:10.1021/ja076216j

    Article  Google Scholar 

  19. Dror T, Ron E, Devarajan T (2003) Biopolymers 68:359–369. doi:10.1002/bip.10290

    Article  Google Scholar 

  20. Fuqiang B, Kathryn NR, James WG, Russell JB (2002) Theor Chem Acc 108:1–11. doi:10.1007/s00214-002-0344-z

    Google Scholar 

  21. Magalhaes AL, Madail SRRS, Ramos MJ (2000) Theor Chem Acc 105:68–76. doi:10.1007/s002140000187

    CAS  Google Scholar 

  22. Loos PF, Assfeld X, Rivail JL (2007) Theor Chem Acc 118:165–171. doi:10.1007/s00214-007-0258-x

    Article  CAS  Google Scholar 

  23. Biegler-Konig F, Bader RF (2002) AIM 2000, Version 2

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03, Gaussian, Int, Pittsburgh, PA

  25. Uwe B (2003) Prog Polym Sci 28:1049–1105. doi:10.1016/S0079-6700(02)00150-8

    Article  Google Scholar 

  26. Robert PA, Maria B, Sarah LP (1997) J Comput Aided Mol Des 11:479–490. doi:10.1023/A:1007923124523

    Article  Google Scholar 

  27. Bader RFW (1990) Atom in molecules: a quantum theory. International series of monographs in chemistry. Oxford University Press, Oxford

    Google Scholar 

  28. Bader RFW (1998) J Phys Chem A 102:7314. doi:10.1021/jp981794v

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, YP., Ren, XH., Wang, HJ. et al. Hydrogen-bonding interaction in a complex of amino acid with urea studied by DFT calculations. Struct Chem 20, 213–220 (2009). https://doi.org/10.1007/s11224-009-9416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9416-1

Keywords

Navigation