Skip to main content
Log in

Density functional theory and topological analysis on the hydrogen bonds in cysteine–propanoic acid complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The complexes formed via hydrogen bonding interactions between cysteine and propanoic acid have been studied at the density three-parameter hybrid functional DFT-B3LYP/6-311++G(d,p) level regarding their geometries, energies, vibrational frequencies, and topological features of the electron density. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis was employed to elucidate the interaction characteristics in cysteine–propanoic acid (Cys–Prop) complexes. More than 10 kinds of hydrogen bonds (H-bonds) including intra- and inter-molecular H-bonds have been found in Cys–Prop complexes. The results show that both the strength of H-bonds and the deformation are important factors for the stability of Cys–Prop complexes. The strongest H-bonds (O2HA···O1B and O2HA···O1B) exist in the most stable Cys–Prop complex. The stronger H-bonds formed between hydroxyl and O (or N) atom usually stronger than those involve C (or S) atom. Relationships between the electron density (ρ) of BCP and H-bond length as well as the Fock matrix element (F ij) has also been investigated and used to study the nature of H-bonds. Moreover, the results show that the change of the bond length linearly correlates with the corresponding frequency shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tiffani MH, Jacek D, Terrance W, Glake AH (2009) Int J Quantum Chem 109:119

    Article  Google Scholar 

  2. Luebker DJ, Hansen KJ, Bass NM, Butenhoff JL, Seacat AM (2002) Toxicology 176:175

    Article  CAS  Google Scholar 

  3. Han X, Snow TA, Kemper RA, Jepson GW (2003) Chem Res Toxicol 16:775

    Article  CAS  Google Scholar 

  4. Heuvel JPV, Kuslikis BI, Peterson RE (1992) Chem Biol Interact 82:317

    Article  Google Scholar 

  5. Kitagawa Y, Shoji M, Saito T, Nakanishi Y, Koizumi K, Kawakami T, Okumura M, Yamaguchi K (2008) Int J Quantum Chem 108:2881

    Article  CAS  Google Scholar 

  6. Maul R, Ortmann F, Preuss M, Hannewald K, Bechstedt F (2007) J Comput Chem 28:1817

    Article  CAS  Google Scholar 

  7. Rozas I, Alkorta I, Elguero J (2008) Struct Chem 19:923

    Article  CAS  Google Scholar 

  8. Troitino D, Bailey L, Peral F (2006) Theochem J Mol Struct 767:131

    Article  CAS  Google Scholar 

  9. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford, UK

    Google Scholar 

  10. Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, London

    Google Scholar 

  11. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  12. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  13. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) J Chem Phys 84:5687

    Article  CAS  Google Scholar 

  14. Beche AD (1988) Phys Rev A 38:3098

    Article  Google Scholar 

  15. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  16. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  17. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  18. Nozad AG, Meftah S, Ghasemi MH, Kiyani RA, Aghazadeh M (2009) Biophys Chem 141:49

    Article  CAS  Google Scholar 

  19. Ebrahimi A, Habibi Khorassani SM, Delarami H (2009) Chem Phys 365:18

    Article  CAS  Google Scholar 

  20. Domagala M, Grabowski SJ (2009) Chem Phys 363:42

    Article  CAS  Google Scholar 

  21. Yang C, Wang HJ (2008) Struct Chem 19:843

    Article  CAS  Google Scholar 

  22. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  23. Frisch MJ, Truchs GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian, Inc., Pittsburgh, PA

  24. Biegler-König F (2000) University of Applied Sciences. Bielefeld, Germany

  25. Dobrowolski JC, Jamroz MH, Kolos R, Rode JE, Sadlej J (2007) Chem Phys Chem 8:1085

    CAS  Google Scholar 

  26. Dobrowolski JC, Rode JE, Sadlej J (2007) Theochem J Mol Struct 810:129

    Article  CAS  Google Scholar 

  27. Fernandez-Ramos A, Cabaleiro-Lago E, Hermida-Ramon JM, Martinez-Nunez E, Pena-Gallego A (2000) Theochem J Mol Struct 498:191

    Article  CAS  Google Scholar 

  28. Pecul M (2006) Chem Phys Lett 418:1

    Article  CAS  Google Scholar 

  29. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  30. Galvez O, Gomez PC, Pacios LF (2003) J Chem Phys 118:4878

    Article  CAS  Google Scholar 

  31. Miao R, Jin C, Yang GS, Hong J, Zhao CM, Zhu LG (2005) J Phys Chem A 109:2340

    Article  CAS  Google Scholar 

  32. Parreira RLT, Valdes H, Galembeck SE (2006) Chem Phys 331:96

    Article  CAS  Google Scholar 

  33. Tian SX (2004) J Phys Chem B 108:20388

    Article  CAS  Google Scholar 

  34. Zhou HW, Lai WP, Zhang ZQ, Li WK, Cheung HY (2009) J Comput Aided Mol Des 23:153

    Article  CAS  Google Scholar 

  35. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  36. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  37. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835

    Article  CAS  Google Scholar 

  38. Pacios LF (2004) J Phys Chem A 108:1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguo Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Yu, L. & Dai, Y. Density functional theory and topological analysis on the hydrogen bonds in cysteine–propanoic acid complexes. Struct Chem 21, 855–862 (2010). https://doi.org/10.1007/s11224-010-9620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9620-z

Keywords

Navigation