Skip to main content

Advertisement

Log in

Lessons from bariatric surgery: Can increased GLP-1 enhance vascular repair during cardiometabolic-based chronic disease?

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) and obesity represent entangled pandemics that accelerate the development of cardiovascular disease (CVD). Given the immense burden of CVD in society, non-invasive prevention and treatment strategies to promote cardiovascular health are desperately needed. During T2D and obesity, chronic dysglycemia and abnormal adiposity result in systemic oxidative stress and inflammation that deplete the vascular regenerative cell reservoir in the bone marrow that impairs blood vessel repair and exacerbates the penetrance of CVD co-morbidities. This novel translational paradigm, termed ‘regenerative cell exhaustion’ (RCE), can be detected as the depletion and dysfunction of hematopoietic and endothelial progenitor cell lineages in the peripheral blood of individuals with established T2D and/or obesity. The reversal of vascular RCE has been observed after administration of the sodium-glucose cotransporter-2 inhibitor (SGLT2i), empagliflozin, or after bariatric surgery for severe obesity. In this review, we explore emerging evidence that links improved dysglycemia to a reduction in systemic oxidative stress and recovery of circulating pro-vascular progenitor cell content required for blood vessel repair. Given that bariatric surgery consistently increases systemic glucagon-like-peptide 1 (GLP-1) release, we also focus on evidence that the use of GLP-1 receptor agonists (GLP-1RA) during obesity may act to inhibit the progression of systemic dysglycemia and adiposity, and indirectly reduce inflammation and oxidative stress, thereby limiting the impact of RCE. Therefore, therapeutic intervention with currently-available GLP-1RA may provide a less-invasive modality to reverse RCE, bolster vascular repair mechanisms, and improve cardiometabolic risk in individuals living with T2D and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGE:

Advanced Glycation End Product

ALDH:

Aldehyde Dehydrogenase

BMI:

Body Mass Index

CNS:

Central Nervous System

CRP:

C-Reactive Protein

CV:

Cardiovascular

CVD:

Cardiovascular Disease

DPP4:

Dipeptidyl Peptidase 4

eNOS:

Endothelial Nitric Oxide Synthase

EC:

Endothelial Cell

EPC:

Endothelial Progenitor Cell

GLP-1:

Glucagon-like Peptide 1

GLP-1R:

Glucagon-like Peptide 1 Receptor

GLP-1RA:

Glucagon-like Peptide 1 Receptor Agonist

HbA1c:

Glycated Hemoglobin

HPC:

Hematopoietic Progenitor Cell

HUVEC:

Human Umbilical Vein Endothelial Cell

iNOS:

Inducible Nitric Oxide Synthase

MI:

Myocardial Infarction

MPC:

Mesenchymal Progenitor Cell

NLRP3:

NOD-like Receptor, Pyrin domain-containing 3

NO:

Nitric Oxide

oxLDL:

Oxidized Low-Density Lipoprotein

RCE:

Regenerative Cell Exhaustion

RCT:

Randomized Controlled Trial

ROS:

Reactive Oxygen Species

RYGB:

Roux-en Y Gastric Bypass

SIRT1:

Sirtuin 1

SG:

Sleeve Gastrectomy

SSC:

Side Scatter

T2D:

Type 2 Diabetes

References

  1. Roth GA, Abate D, Abate KH, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–88. https://doi.org/10.1016/S0140-6736(18)32203-7.

    Article  Google Scholar 

  2. Bramante CT, Lee CJ, Gudzune KA. Treatment of Obesity in Patients With Diabetes. Diabetes Spectr. 2017;30:237–43. https://doi.org/10.2337/ds17-0030.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beckman JA, Paneni F, Cosentino F, Creager MA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J. 2013;34:2444–52. https://doi.org/10.1093/eurheartj/eht142.

    Article  PubMed  Google Scholar 

  4. International Diabetes Federation. IDF Diabetes Atlas. (2019) 9th Edn.

  5. Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81. https://doi.org/10.1016/j.diabres.2018.02.023.

    Article  CAS  PubMed  Google Scholar 

  6. Wright AK, Suarez-Ortegon MF, Read SH, et al. Risk Factor Control and Cardiovascular Event Risk in People With Type 2 Diabetes in Primary and Secondary Prevention Settings. Circulation. 2020;142:1925–36. https://doi.org/10.1161/CIRCULATIONAHA.120.046783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.

    Article  PubMed  Google Scholar 

  8. Wharton S, Lau DCW, Vallis M, et al. Obesity in adults: A clinical practice guideline. CMAJ. 2020;192:E875–91. https://doi.org/10.1503/cmaj.191707.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kaptoge S, Pennells L, De Bacquer D, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Heal. 2019;7:e1332–45. https://doi.org/10.1016/S2214-109X(19)30318-3.

    Article  Google Scholar 

  10. Risk Factor Collaboration NCD, (NCD-RisC) L, Abdeen ZA, Hamid ZA, , et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet (London, England). 2017;390:2627–42. https://doi.org/10.1016/S0140-6736(17)32129-3.

    Article  Google Scholar 

  11. Heymsfield SB, Gonzalez MCC, Shen W, et al. Weight loss composition is one-fourth fat-free mass: a critical review and critique of this widely cited rule. Obes Rev. 2014;15:310–21. https://doi.org/10.1111/obr.12143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grant RW, Dixit VD. Adipose tissue as an immunological organ. Obesity. 2015;23:512–8. https://doi.org/10.1002/oby.21003.

    Article  CAS  PubMed  Google Scholar 

  13. Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-Based Chronic Disease, Adiposity and Dysglycemia Drivers: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75:525–38. https://doi.org/10.1016/j.jacc.2019.11.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;80:275:964–967. https://doi.org/10.1126/science.275.5302.964

  15. Urbich C, Heeschen C, Aicher A, et al. Relevance of Monocytic Features for Neovascularization Capacity of Circulating Endothelial Progenitor Cells. Circulation. 2003;108:2511–6. https://doi.org/10.1161/01.CIR.0000096483.29777.50.

    Article  PubMed  Google Scholar 

  16. Yoder MC, Mead LE, Prater D, et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. In: Blood. Blood, pp 1801–1809

  17. Qadura M, Terenzi DC, Verma S, et al. Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies. Stem Cells. 2018;36:161–71. https://doi.org/10.1002/stem.2751.

    Article  PubMed  Google Scholar 

  18. Crisan M, Yap S, Casteilla L, et al. A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell. 2008;3:301–13. https://doi.org/10.1016/j.stem.2008.07.003.

    Article  CAS  PubMed  Google Scholar 

  19. Fadini GP, Spinetti G, Santopaolo M, Madeddu P. Impaired regeneration contributes to poor outcomes in diabetic peripheral artery disease. Arterioscler Thromb Vasc Biol. 2020;40(1):34–44. https://www.ahajournals.org/doi/10.1161/ATVBAHA.119.312863

  20. Terenzi DC, Al-Omran M, Quan A, et al. Circulating Pro-Vascular Progenitor Cell Depletion During Type 2 Diabetes. JACC Basic to Transl Sci. 2019;4:98–112. https://doi.org/10.1016/j.jacbts.2018.10.005.

    Article  Google Scholar 

  21. Fadini GP, Albiero M, De Kreutzenberg SV, et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care. 2013;36:943–9. https://doi.org/10.2337/dc12-1084.

    Article  PubMed  PubMed Central  Google Scholar 

  22. DiPersio JF. Diabetic Stem-Cell “Mobilopathy.” N Engl J Med. 2011;365:2536–8. https://doi.org/10.1056/nejmcibr1112347.

    Article  CAS  PubMed  Google Scholar 

  23. Albiero M, Ciciliot S, Tedesco S, et al. Diabetes-associated myelopoiesis drives stem cell mobilopathy through an OSM-p66Shc signaling pathway. Diabetes. 2019;68:1303–14. https://doi.org/10.2337/db19-0080.

    Article  CAS  PubMed  Google Scholar 

  24. Cappellari R, D’Anna M, Menegazzo L, et al. Diabetes mellitus impairs circulating proangiogenic granulocytes. Diabetologia. 2020;63:1872–84. https://doi.org/10.1007/s00125-020-05142-3.

    Article  CAS  PubMed  Google Scholar 

  25. Albiero M, Tedesco S, Amendolagine FI, et al. Inhibition of SGLT-2 rescues bone marrow cell traffic for vascular repair. Role of glucose control and ketogenesis. Diabetes. 2021. https://doi.org/10.2337/db20-1045.

  26. Capoccia BJ, Robson DL, Levac KD, et al. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood. 2009;113:5340–51. https://doi.org/10.1182/blood-2008-04-154567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hess DA, Meyerrose TE, Wirthlin L, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104. https://doi.org/10.1182/blood-2004-02-0448.

  28. Hess DA, Wirthlin L, Craft TP, et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107:2162–9. https://doi.org/10.1182/blood-2005-06-2284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Putman DM, Liu KY, Broughton HC, et al. Umbilical Cord Blood-Derived Aldehyde Dehydrogenase-Expressing Progenitor Cells Promote Recovery from Acute Ischemic Injury. Stem Cells. 2012;30:2248–60. https://doi.org/10.1002/stem.1206.

    Article  CAS  PubMed  Google Scholar 

  30. Terenzi DC, Bakbak E, Trac JZ, et al. Isolation and characterization of circulating pro-vascular progenitor cell subsets from human whole blood samples. STAR Protoc. 2021;2: 100311. https://doi.org/10.1016/j.xpro.2021.100311.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Putman DM, Cooper TT, Sherman SE, et al. Expansion of Umbilical Cord Blood Aldehyde Dehydrogenase Expressing Cells Generates Myeloid Progenitor Cells that Stimulate Limb Revascularization. Stem Cells Transl Med. 2017;6:1607–19. https://doi.org/10.1002/sctm.16-0472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sherman SE, Kuljanin M, Cooper TT, et al. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential. Stem Cells. 2017;35:1542–53. https://doi.org/10.1002/stem.2612.

    Article  CAS  PubMed  Google Scholar 

  33. Fadini GP, Miorin M, Facco M, et al. Circulating Endothelial Progenitor Cells Are Reduced in Peripheral Vascular Complications of Type 2 Diabetes Mellitus. J Am Coll Cardiol. 2005;45:1449–57.

    Article  CAS  PubMed  Google Scholar 

  34. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89. https://doi.org/10.1161/hh1301.093953.

  35. Werner N, Kosiol S, Schiegl T, et al. Circulating Endothelial Progenitor Cells and Cardiovascular Outcomes. N Engl J Med. 2005;353:999–1007. https://doi.org/10.1056/NEJMoa043814.

    Article  CAS  PubMed  Google Scholar 

  36. Ahmed FW, Rider R, Glanville M, et al. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study. Cardiovasc Diabetol. 2016;15:1–10. https://doi.org/10.1186/s12933-016-0413-6.

    Article  CAS  Google Scholar 

  37. Yu JW, Deng YP, Han X, et al. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc Diabetol. 2016;15:1–10. https://doi.org/10.1186/s12933-016-0408-3.

    Article  CAS  Google Scholar 

  38. Xu G, Wu H, Zhang J, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med. 2015;87:15–25. https://doi.org/10.1016/j.freeradbiomed.2015.05.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bakhashab S, Ahmed FW, Schulten HJ, et al. Metformin improves the angiogenic potential of human CD34+ cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction. Cardiovasc Diabetol. 2016;15:27. https://doi.org/10.1186/s12933-016-0344-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hess DA, Terenzi DC, Trac JZ, et al. SGLT2 Inhibition with Empagliflozin Increases Circulating Provascular Progenitor Cells in People with Type 2 Diabetes Mellitus. Cell Metab. 2019;30:609–13. https://doi.org/10.1016/j.cmet.2019.08.015.

    Article  CAS  PubMed  Google Scholar 

  41. Lupoli R, Di Minno MND, Guidone C, et al. Effects of bariatric surgery on markers of subclinical atherosclerosis and endothelial function: a meta-analysis of literature studies. Int J Obes. 2016;40:395–402. https://doi.org/10.1038/ijo.2015.187.

    Article  CAS  Google Scholar 

  42. Rubino F, Nathan DM, Eckel RH, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: A joint statement by international diabetes organizations. Diabetes Care. 2016;39:861–77. https://doi.org/10.2337/dc16-0236.

    Article  CAS  PubMed  Google Scholar 

  43. Gadde KM, Martin CK, Berthoud H-R, Heymsfield SB. Obesity - Pathophysiology and Management. J Am Coll Cardiol. 2018;71:69–84. https://doi.org/10.1016/j.jacc.2017.11.011.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Heymsfield SB, Wadden TA. Mechanisms, Pathophysiology, and Management of Obesity. N Engl J Med. 2017;376:254–66. https://doi.org/10.1056/NEJMra1514009.

    Article  CAS  PubMed  Google Scholar 

  45. Buchwald H, Oien DM. Metabolic/Bariatric Surgery Worldwide 2011. Obes Surg. 2013;23:427–36. https://doi.org/10.1007/s11695-012-0864-0.

    Article  PubMed  Google Scholar 

  46. Khorgami Z, Shoar S, Andalib A, et al. Trends in Utilization of Bariatric Surgery, 2010-2014: Sleeve Gastrectomy Dominates. Surg Obes Relat Dis. 2017;13. https://doi.org/10.1016/J.SOARD.2017.01.031.

  47. Welbourn R, Hollyman M, Kinsman R, et al. Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Fourth IFSO Global Registry Report 2018. Obes Surg. 2019;29:782–95. https://doi.org/10.1007/s11695-018-3593-1.

    Article  PubMed  Google Scholar 

  48. Gloy VL, Briel M, Bhatt DL, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347: f5934. https://doi.org/10.1136/bmj.f5934.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Khera R, Murad MH, Chandar AK, et al. Association of Pharmacological Treatments for Obesity With Weight Loss and Adverse Events: A Systematic Review and Meta-analysis. JAMA. 2016;315:2424–34. https://doi.org/10.1001/jama.2016.7602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mingrone G, Panunzi S, De Gaetano A, et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2021;397:293–304. https://doi.org/10.1016/S0140-6736(20)32649-0.

    Article  PubMed  Google Scholar 

  51. Buchwald H, Estok R, Fahrbach K, et al. Weight and Type 2 Diabetes after Bariatric Surgery: Systematic Review and Meta-analysis. Am J Med. 2009;122:248-256.e5. https://doi.org/10.1016/J.AMJMED.2008.09.041.

    Article  PubMed  Google Scholar 

  52. Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:332–9. https://doi.org/10.1097/00000658-199509000-00011.

    Article  Google Scholar 

  53. Carlsson LMS, Sjöholm K, Jacobson P, et al. Life Expectancy after Bariatric Surgery in the Swedish Obese Subjects Study. N Engl J Med. 2020;383:1535–43. https://doi.org/10.1056/nejmoa2002449.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vest AR, Heneghan HM, Agarwal S, et al. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart. 2012;98:1763–77. https://doi.org/10.1136/HEARTJNL-2012-301778.

    Article  PubMed  Google Scholar 

  55. Aminian A, Zajichek A, Arterburn DE, et al. Association of Metabolic Surgery with Major Adverse Cardiovascular Outcomes in Patients with Type 2 Diabetes and Obesity. In: JAMA - Journal of the American Medical Association. Am Med Assoc. 2019;1271–1282.

  56. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes — 5-Year Outcomes. N Engl J Med. 2017;376:641–51. https://doi.org/10.1056/NEJMoa1600869.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xia Q, Campbell JA, Ahmad H, et al. Bariatric surgery is a cost‐saving treatment for obesity—A comprehensive meta‐analysis and updated systematic review of health economic evaluations of bariatric surgery. Obes Rev. 2020;21. https://doi.org/10.1111/obr.12932.

  58. Hess DA, Trac JZ, Glazer SA, et al. Vascular Risk Reduction in Obesity through Reduced Granulocyte Burden and Improved Angiogenic Monocyte Content following Bariatric Surgery. Cell Reports Med. 2020;1:100018.

  59. Yoshino M, Kayser BD, Yoshino J, et al. Effects of Diet versus Gastric Bypass on Metabolic Function in Diabetes. N Engl J Med. 2020;383:721–32. https://doi.org/10.1056/nejmoa2003697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manning S, Pucci A, Batterham RL. GLP-1: A Mediator of the Beneficial Metabolic Effects of Bariatric Surgery? Physiology. 2015;30:50–62. https://doi.org/10.1152/physiol.00027.2014.

    Article  CAS  PubMed  Google Scholar 

  61. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240:236–42. https://doi.org/10.1097/01.sla.0000133117.12646.48.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thaler JP, Cummings DE. Hormonal and Metabolic Mechanisms of Diabetes Remission after Gastrointestinal Surgery. Endocrinology. 2009;150:2518–25. https://doi.org/10.1210/en.2009-0367.

    Article  CAS  PubMed  Google Scholar 

  63. Drucker DJ, Philippe J, Mojsov S, et al. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A. 1987;84:3434–8. https://doi.org/10.1073/pnas.84.10.3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: Novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155:1280–90. https://doi.org/10.1210/en.2013-1934.

    Article  CAS  PubMed  Google Scholar 

  65. Shibasaki T, Takahashi H, Miki T, et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A. 2007;104:19333–8. https://doi.org/10.1073/pnas.0707054104.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yusta B, Baggio LL, Koehler J, et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes. 2015;64:2537–49. https://doi.org/10.2337/db14-1577.

    Article  CAS  PubMed  Google Scholar 

  67. Perez-Montes De Oca A, Pellitero S, Puig-Domingo M. Obesity and GLP-1. Minerva Endocrinol. 2020. https://doi.org/10.23736/S0391-1977.20.03369-6.

  68. Madsen MSA, Holm JB, Pallejà A, et al. Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci Rep. 2019;9:1–12. https://doi.org/10.1038/s41598-019-52103-x.

    Article  CAS  Google Scholar 

  69. Laferrère B, Teixeira J, McGinty J, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:2479–85. https://doi.org/10.1210/jc.2007-2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jirapinyo P, Jin DX, Qazi T, et al. A Meta-Analysis of GLP-1 After Roux-En-Y Gastric Bypass: Impact of Surgical Technique and Measurement Strategy. Obes Surg. 2018;28:615–26. https://doi.org/10.1007/s11695-017-2913-1.

    Article  PubMed  Google Scholar 

  71. Larraufie P, Roberts GP, McGavigan AK, et al. Important Role of the GLP-1 Axis for Glucose Homeostasis after Bariatric Surgery. Cell Rep. 2019;26:1399-1408.e6. https://doi.org/10.1016/j.celrep.2019.01.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ribeiro-Parenti L, Jarry AC, Cavin JB, et al. Bariatric surgery induces a new gastric mucosa phenotype with increased functional glucagon-like peptide-1 expressing cells. Nat Commun. 2021;12:1–11. https://doi.org/10.1038/s41467-020-20301-1.

    Article  CAS  Google Scholar 

  73. Husain M, Birkenfeld AL, Donsmark M, et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2019;381:841–51. https://doi.org/10.1056/NEJMoa1901118.

    Article  CAS  PubMed  Google Scholar 

  74. Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov. 2020;19:277–89. https://doi.org/10.1038/s41573-019-0053-0.

    Article  CAS  PubMed  Google Scholar 

  75. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819–37.

    Article  CAS  PubMed  Google Scholar 

  76. Drucker DJ. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018;27:740–56.

    Article  CAS  PubMed  Google Scholar 

  77. Lipscombe L, Booth G, Butalia S, et al. In Vitro Evaluation of Hypoglycemic Agents to Target Human Islet Amyloid Polypeptide: A Key Protein Involved in Amyloid Deposition and Beta-Cell Loss. Can J Diabetes. 2015. https://doi.org/10.1016/j.jcjd.2017.10.034.

    Article  PubMed  Google Scholar 

  78. Lovshin JA. Glucagon-like Peptide-1 Receptor Agonists: A Class Update for Treating Type 2 Diabetes. Can J diabetes. 2017;41:524–35. https://doi.org/10.1016/j.jcjd.2017.08.242.

    Article  PubMed  Google Scholar 

  79. Varin EM, McLean BA, Lovshin JA. Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes: Review of Cardiovascular Outcome Trials. Can J Diabetes. 2019. https://doi.org/10.1016/j.jcjd.2019.08.011.

    Article  PubMed  Google Scholar 

  80. Wilding JPH, Batterham RL, Calanna S, et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N Engl J Med NEJMoa2032183; 2021. https://doi.org/10.1056/NEJMoa2032183.

  81. Davies M, Færch L, Jeppesen OK, et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet. 2021;397:971–84. https://doi.org/10.1016/S0140-6736(21)00213-0.

    Article  CAS  PubMed  Google Scholar 

  82. Pi-Sunyer X, Astrup A, Fujioka K, et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med. 2015;373:11–22. https://doi.org/10.1056/NEJMoa1411892.

    Article  CAS  PubMed  Google Scholar 

  83. Ryan DH, Lingvay I, Colhoun HM, et al. Semaglutide Effects on Cardiovascular Outcomes in People With Overweight or Obesity (SELECT) rationale and design. Am Heart J. 2020;229:61–9. https://doi.org/10.1016/j.ahj.2020.07.008.

    Article  PubMed  Google Scholar 

  84. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med. 2015;373:2247–57. https://doi.org/10.1056/NEJMoa1509225.

    Article  CAS  PubMed  Google Scholar 

  85. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375:311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375:1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  87. Holman RR, Bethel MA, Mentz RJ, et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2017;377:1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  PubMed  Google Scholar 

  88. Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392:1519–29. https://doi.org/10.1016/S0140-6736(18)32261-X.

    Article  CAS  PubMed  Google Scholar 

  89. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121–30. https://doi.org/10.1016/S0140-6736(19)31149-3.

    Article  CAS  PubMed  Google Scholar 

  90. MacDonald PE, El-kholy W, Riedel MJ, et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. In: Diabetes. American Diabetes Association Inc., 2002;S434–S442.

  91. Dickson SL, Shirazi RH, Hansson C, et al. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: A new role for mesolimbic GLP-1 receptors. J Neurosci. 2012;32:4812–20. https://doi.org/10.1523/JNEUROSCI.6326-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van Bloemendaal L, ten Kulve JS, La Fleur SE, et al. Effects of glucagon-like peptide 1 on appetite and body weight: Focus on the CNS. J Endocrinol. 2014;221:1–16. https://doi.org/10.1530/JOE-13-0414.

    Article  CAS  Google Scholar 

  93. Cabou C, Vachoux C, Campistron G, et al. Brain GLP-1 signaling regulates femoral artery blood flow and insulin sensitivity through hypothalamic PKC-δ. Diabetes. 2011;60:2245–56. https://doi.org/10.2337/db11-0464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hogan AE, Tobin AM, Ahern T, et al. Glucagon-like peptide-1 (GLP-1) and the regulation of human invariant natural killer T cells: Lessons from obesity, diabetes and psoriasis. Diabetologia. 2011;54:2745–54. https://doi.org/10.1007/s00125-011-2232-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014;57:781–4. https://doi.org/10.1007/s00125-013-3145-0.

    Article  CAS  PubMed  Google Scholar 

  96. Yusta B, Baggio LL, Koehler J, et al. GLP-1R Agonists Modulate Enteric Immune Responses Through the Intestinal Intraepithelial Lymphocyte GLP-1R. 2015. https://doi.org/10.2337/db14-1577.

  97. Zhu E, Hu L, Wu H, et al. Dipeptidyl peptidase-4 regulates hematopoietic stem cell activation in response to chronic stress. J Am Heart Assoc. 2017;6. https://doi.org/10.1161/JAHA.117.006394.

  98. Sanz C, Vázquez P, Blázquez C, et al. Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab. 2010;298. https://doi.org/10.1152/ajpendo.00460.2009.

  99. Zhou H, Li D, Shi C, et al. Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci Rep. 2015;5:12898. https://doi.org/10.1038/srep12898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Challa TD, Beaton N, Arnold M, et al. Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem. 2012;287:6421–30. https://doi.org/10.1074/jbc.M111.310342.

    Article  CAS  PubMed  Google Scholar 

  101. Wang X, Chen J, Rong C, et al. GLP-1RA promotes brown adipogenesis of C3H10T1/2 mesenchymal stem cells via the PI3K-AKT-mTOR signaling pathway. Biochem Biophys Res Commun. 2018;506:976–82. https://doi.org/10.1016/j.bbrc.2018.10.197.

    Article  CAS  PubMed  Google Scholar 

  102. Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: A mini-review. Gerontology. 2011;58:15–23.

    Article  Google Scholar 

  103. Kooijman S, Wang Y, Parlevliet ET, et al. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia. 2015;58:2637–46. https://doi.org/10.1007/s00125-015-3727-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Luo G, Liu H, Lu H. Glucagon-like peptide-1(GLP-1) receptor agonists: Potential to reduce fracture risk in diabetic patients? Br J Clin Pharmacol. 2016;81:78–88.

    Article  PubMed  Google Scholar 

  105. Xie XY, Mo ZH, Chen K, et al. Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation. Med Sci Monit. 2011;17:BR35. https://doi.org/10.12659/msm.881383.

  106. Aronis KN, Tsoukas MA, Mantrzoros CS. Potential cardioprotective action of GLP-1: from bench to bedside. Metabolism. 2014;63:979–88. https://doi.org/10.1016/j.metabol.2014.05.009.

    Article  CAS  PubMed  Google Scholar 

  107. Di Y, He J, Ma P, et al. Liraglutide promotes the angiogenic ability of human umbilical vein endothelial cells through the JAK2/STAT3 signaling pathway. Biochem Biophys Res Commun. 2020;523:666–71. https://doi.org/10.1016/j.bbrc.2020.01.004.

    Article  CAS  PubMed  Google Scholar 

  108. Zhan Y, Sun H lin, Chen H, et al. Glucagon-like peptide-1 (GLP-1) protects vascular endothelial cells against advanced glycation end products (AGEs) - induced apoptosis. Med Sci Monit. 2016;18:BR286. https://doi.org/10.12659/MSM.883207.

  109. Liu C, Liu Y, He J, et al. Liraglutide Increases VEGF Expression via CNPY2-PERK Pathway Induced by Hypoxia/Reoxygenation Injury. Front Pharmacol. 2019;10. https://doi.org/10.3389/fphar.2019.00789.

  110. Hill JM, Zalos G, Halcox JPJ, et al. Circulating Endothelial Progenitor Cells, Vascular Function, and Cardiovascular Risk. N Engl J Med. 2003;348:593–600. https://doi.org/10.1056/nejmoa022287.

    Article  PubMed  Google Scholar 

  111. Fadini GP, Sartore S, Schiavon M, et al. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia. 2006;49:3075–84. https://doi.org/10.1007/s00125-006-0401-6.

    Article  CAS  PubMed  Google Scholar 

  112. Fadini GP, Bonora BM, Marcuzzo G, et al. Circulating Stem Cells Associate With Adiposity and Future Metabolic Deterioration in Healthy Subjects. J Clin Endocrinol Metab. 2015;100:4570–8. https://doi.org/10.1210/jc.2015-2867.

    Article  CAS  PubMed  Google Scholar 

  113. Fadini G, de Kreutzenberg S, Coracina A, et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur Heart J. 2006;27:2247–55.

    Article  CAS  PubMed  Google Scholar 

  114. Timmermans M, Topal B, E Sanches E, et al. The effects of Glucagon Like Peptide-1 (GLP-1) on cardiac remodelling: exploring the role of medication and physiological modulation after metabolic surgery: a narrative review. Minerva Endocrinol. 2021. https://doi.org/10.23736/S2724-6507.21.03296-X.

  115. Giaccari A, Sorice G, Muscogiuri G. Glucose toxicity: The leading actor in the pathogenesis and clinical history of type 2 diabetes – mechanisms and potentials for treatment. Nutr Metab Cardiovasc Dis. 2009;19:365–77. https://doi.org/10.1016/j.numecd.2009.03.018.

    Article  CAS  PubMed  Google Scholar 

  116. Maedler K, Sergeev P, Ris F, et al. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 2002;110:851–60. https://doi.org/10.1172/jci15318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schauer PR, Mingrone G, Ikramuddin S, Wolfe B. Clinical outcomes of metabolic surgery: Efficacy of glycemic control, weight loss, and remission of diabetes. Diabetes Care. 2016;39:902–11. https://doi.org/10.2337/dc16-0382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Andreadis P, Karagiannis T, Malandris K, et al. Semaglutide for type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes, Obes Metab. 2018;20:2255–63. https://doi.org/10.1111/dom.13361.

    Article  CAS  Google Scholar 

  119. Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)- cells. Diabetologia. 1999;42:856–64. https://doi.org/10.1007/s001250051238.

    Article  CAS  PubMed  Google Scholar 

  120. Imai Y, Dobrian AD, Weaver JR, et al. Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes, Obes Metab. 2013;15:117–29. https://doi.org/10.1111/dom.12161.

    Article  CAS  Google Scholar 

  121. Pugazhenthi U, Velmurugan K, Tran A, et al. Anti-inflammatory action of exendin-4 in human islets is enhanced by phosphodiesterase inhibitors: Potential therapeutic benefits in diabetic patients. Diabetologia. 2010;53:2357–68. https://doi.org/10.1007/s00125-010-1849-y.

    Article  CAS  PubMed  Google Scholar 

  122. Toso C, McCall M, Emamaullee J, et al. Liraglutide, a long-acting human glucagon-like peptide 1 analogue, improves human islet survival in culture. Transpl Int. 2010;23:259–65. https://doi.org/10.1111/j.1432-2277.2009.00984.x.

    Article  CAS  PubMed  Google Scholar 

  123. Stoffers DA, Kieffer TJ, Hussain MA, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes. 2000;49:741–8. https://doi.org/10.2337/diabetes.49.5.741.

    Article  CAS  PubMed  Google Scholar 

  124. De Leó DD, Deng S, Madani R, et al. Role of Endogenous Glucagon-Like Peptide-1 in Islet Regeneration After Partial Pancreatectomy. 2003.

  125. Drucker DJ. Glucagon-Like Peptide-1 and the Islet β-Cell: Augmentation of Cell Proliferation and Inhibition of Apoptosis. Endocrinology. 2003;144:5145–8. https://doi.org/10.1210/en.2003-1147.

    Article  CAS  PubMed  Google Scholar 

  126. Jones AG, McDonald TJ, Shields BM, et al. Markers of β-cell failure predict poor glycemic response to GLP-1 receptor agonist therapy in type 2 diabetes. Diabetes Care. 2016;39:250–7. https://doi.org/10.2337/dc15-0258.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang WQ, Tian Y, Chen XM, et al. Liraglutide ameliorates beta-cell function, alleviates oxidative stress and inhibits low grade inflammation in young patients with new-onset type 2 diabetes chiCTR1800018008 chiCTR. Diabetol Metab Syndr. 2018;10:91. https://doi.org/10.1186/s13098-018-0392-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tamura K, Minami K, Kudo M, et al. Liraglutide improves pancreatic beta cell mass and function in alloxan-induced diabetic mice. PLoS ONE. 2015;10: e0126003. https://doi.org/10.1371/journal.pone.0126003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Adam M, Murugavel S, Bugyei-Twum A, et al. BRCA2 is a Novel Regulator of Endothelial Cell Function and Apoptosis Following Oxidative Stress. Atheroscler Suppl. 2018;32:110. https://doi.org/10.1016/j.atherosclerosissup.2018.04.338.

    Article  Google Scholar 

  130. Verma S, Anderson TJ. Fundamentals of endothelial function for the clinical cardiologist. Circulation. 2002;105:546–9.

    Article  CAS  PubMed  Google Scholar 

  131. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997;100:2153–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Sledzinski T, Sledzinski M, Smolenski RT, Swierczynski J. Increased serum nitric oxide concentration after bariatric surgery-a potential mechanism for cardiovascular benefit. Obes Surg. 2010;20:204–10. https://doi.org/10.1007/s11695-009-0041-2.

    Article  PubMed  Google Scholar 

  133. Wei R, Ma S, Wang C, et al. Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner. Am J Physiol Metab. 2016;310:E947–57. https://doi.org/10.1152/ajpendo.00400.2015.

    Article  Google Scholar 

  134. Uribarri J, Cai W, Woodward M, et al. Elevated Serum Advanced Glycation Endproducts in Obese Indicate Risk for the Metabolic Syndrome: A Link Between Healthy and Unhealthy Obesity? J Clin Endocrinol Metab. 2015;100:1957–66. https://doi.org/10.1210/jc.2014-3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vinué Á, Navarro J, Herrero-Cervera A, et al. The GLP-1 analogue lixisenatide decreases atherosclerosis in insulin-resistant mice by modulating macrophage phenotype. Diabetologia. 2017;60:1801–12. https://doi.org/10.1007/s00125-017-4330-3.

    Article  CAS  PubMed  Google Scholar 

  136. Choe SS, Huh JY, Hwang IJ, et al. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front. Endocrinol. (Lausanne). 2016;7:1.

  137. Elgazar-Carmon V, Rudich A, Hadad N, Levy R. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res. 2008;49:1894–903. https://doi.org/10.1194/jlr.M800132-JLR200.

    Article  CAS  PubMed  Google Scholar 

  138. Nishimura S, Manabe I, Nagasaki M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15:914–20. https://doi.org/10.1038/nm.1964.

    Article  CAS  PubMed  Google Scholar 

  139. Winer DA, Winer S, Shen L, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med. 2011;17:610–7. https://doi.org/10.1038/nm.2353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rocha VZ, Folco EJ, Sukhova G, et al. Interferon-γ, a Th1 cytokine, regulates fat inflammation: A role for adaptive immunity in obesity. Circ Res. 2008;103:467–76. https://doi.org/10.1161/CIRCRESAHA.108.177105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37:365–71.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84. https://doi.org/10.1172/JCI29881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Verma S, Kuliszewski MA, Li SH, et al. C-Reactive Protein Attenuates Endothelial Progenitor Cell Survival, Differentiation, and Function: Further Evidence of a Mechanistic Link between C-Reactive Protein and Cardiovascular Disease. Circulation. 2004;109:2058–67. https://doi.org/10.1161/01.CIR.0000127577.63323.24.

    Article  CAS  PubMed  Google Scholar 

  144. Hein TW, Singh U, Vasquez-Vivar J, et al. Human C-reactive protein induces endothelial dysfunction and uncoupling of eNOS in vivo. Atherosclerosis. 2009;206:61–8. https://doi.org/10.1016/j.atherosclerosis.2009.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Illán Gómez F, Gonzálvez Ortega M, Aragón Alonso A, et al. Obesity, endothelial function and inflammation: the effects of weight loss after bariatric surgery. Nutr Hosp. 2016;33:1340–1346. https://doi.org/10.20960/nh.793.

  146. Mocanu AO, Mulya A, Huang H, et al. Effect of roux-en-y gastric bypass on the NLRP3 Inflammasome in adipose tissue from obese rats. PLoS One. 2015;10. https://doi.org/10.1371/journal.pone.0139764.

  147. Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–89. https://doi.org/10.1038/nm.2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen A, Chen Z, Xia Y, et al. Liraglutide attenuates NLRP3 inflammasome-dependent pyroptosis via regulating SIRT1/NOX4/ROS pathway in H9c2 cells. Biochem Biophys Res Commun. 2018;499:267–72. https://doi.org/10.1016/j.bbrc.2018.03.142.

    Article  CAS  PubMed  Google Scholar 

  149. Luo X, Hu Y, He S, et al. Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation. Arch Biochem Biophys. 2019;671:203–9. https://doi.org/10.1016/j.abb.2019.07.008.

    Article  CAS  PubMed  Google Scholar 

  150. Mazidi M, Karimi E, Rezaie P, Ferns GA. Treatment with GLP1 receptor agonists reduce serum CRP concentrations in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. J. Diabetes Complications. 2017.

  151. Bian F, Yang XY, Xu G, et al. CRP-Induced NLRP3 Inflammasome Activation Increases LDL Transcytosis Across Endothelial Cells. Front Pharmacol 10.https://doi.org/10.3389/fphar.2019.00040.

  152. Lee YS, Jun HS. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediators Inflamm. 2016.

  153. Zhang W, Huang Q, Zeng Z, et al. Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells Oxid Med Cell Longev. 2017.

Download references

Acknowledgements

The authors would like to thank M. G. Rudakevich MSc (BMC) of Synapse Visuals for generating the original illustrations. E.B. was the recipient of a University of Toronto Banting & Best Diabetes Centre-Novo Nordisk Studentship. S.V. has a Tier 1 Canada Research Chair in Cardiovascular Surgery. D.A.H. is the Sheldon H. Weinstein Chair in Diabetes Research at the Schulich School of Medicine, Western University.

Funding

This work was supported by funding from the Canadian Institutes of Health Research (CIHR) grant (MOP#378189). S.V. reports receiving research grants and/or speaking honoraria from Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, EOCI Pharmacomm Ltd, HLS Therapeutics, Janssen, Merck, Novartis, Novo Nordisk, Pfizer, PhaseBio, Sanofi, Sun Pharmaceuticals, and the Toronto Knowledge Translation Working Group; he is also the President of the Canadian Medical and Surgical Knowledge Translation Research Group, a federally incorporated not-for-profit physician organization. No other authors have anything to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hess.

Ethics declarations

Conflict of interest

S.V. reports receiving research grants and/or speaking honoraria from Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, EOCI Pharmacomm Ltd, HLS Therapeutics, Janssen, Merck, Novartis, Novo Nordisk, Pfizer, PhaseBio, Sanofi, Sun Pharmaceuticals, and the Toronto Knowledge Translation Working Group; he is also the President of the Canadian Medical and Surgical Knowledge Translation Research Group, a federally incorporated not-for-profit physician organization. No other authors have anything to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary important terms:

Abnormal Adiposity:

the condition of being severely overweight or obese.

Advanced Glycation End Products (AGE):

Molecules formed by the non-enzymatic and irreversible reaction of reducing sugars and the amino group of a protein, lipid or nucleic acid. AGE levels are often elevated during hyperglycemia and contribute to chronic oxidative stress.

Aldehyde dehydrogenase (ALDH):

An intracellular enzyme that protects progenitor cells from oxidative stress and alkylating agents. As progenitor cells differentiate and mature, ALDH expression decreases.

Atherosclerosis:

an inflammatory disease of the arteries characterized by the deposition of plaques of fatty material on their inner walls.

Body-mass Index (BMI):

A measurement of an individuals’ weight in relation to their height. BMI is often used clinically to classify obesity and is defined as body mass divided by the square of an individual’s height [Kg/m2].

Diabesity:

A term used to describe the overlapping pathophysiology of diabetes and obesity. Although distinct metabolic conditions, diabetes and obesity share many common features such as increased systemic inflammation and oxidative stress.

Dipeptidyl Peptidase 4 (DPP4):

A ubiquitously expressed serum protease responsible for the N-terminal cleavage of bioactive substrates. Particularly, DPP4 is responsible for degradation of the incretin class of peptides such as GLP-1.

Endothelial Progenitor Cell (EPC):

As building blocks of new blood vessels, circulating EPC function facilitates vessel repair and are critical in the prevention of ischemic complications.

Glucagon-like Peptide 1 (GLP-1):

Belonging to the incretin family, this peptide hormone is secreted primarily by L-cells expressed throughout the gastrointestinal tract. GLP-1s primary function is to promote insulin secretion by β-cells, and inhibit glucagon secretion by α-cells of the pancreas.

Dysglycemia:

abnormality in blood glucose level stability.

Hematopoietic Progenitor Cell (HPC):

A multipotent cell line capable of differentiating into both myeloid, and lymphoid blood cell types. Their function is critical for promoting vessel repair and maintaining homeostasis..

Mesenchymal Progenitor Cell (MPC):

A multipotent cell line capable of differentiating into pericytes and smooth muscle cells. Once in the peripheral circulation, these cells envelop blood vessels, stabilize new capillaries and promote vascular integrity.

NOD-like Receptor, Pyrin Domain-containing 3 (NLRP3):

Expressed mostly in macrophages, this protein is a vital component of the NLRP3 inflammasome. Upon activation, the NLRP3 inflammasome catalyzes the activation of pro-inflammatory cytokines that modulate inflammation and apoptosis.

Reactive Oxygen Species (ROS):

A class of oxygen-containing, and highly reactive, free-radical produced as a product of mitochondrial oxidative phosphorylation. A buildup of ROS, characteristic of cardiometabolic disease, can result in cellular damage and promote systemic inflammation.

Regenerative Cell Exhaustion (RCE):

A state characterized by the depletion and dysfunction of pro-vascular progenitor cell, which ultimately results in decreased vessel repair. RCE is the result of chronic inflammation and oxidative stress and can be detected in the bone marrow of individuals with cardiometabolic disease.

Sodium Glucose Cotransporter-2 (SGLT2):

A transport protein found in the proximal tubule of the kidney. Inhibition of this transporter with pharmacological agents promotes glucose excretion, combatting hyperglycemia.

Type 2 Diabetes (T2D):

A metabolic condition characterized by glucotoxicity as a result of decreased insulin sensitivity and chronic hyperglycemia. T2D is an important risk factor for developing ischemic cardiovascular comorbidities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakbak, E., Terenzi, D.C., Trac, J.Z. et al. Lessons from bariatric surgery: Can increased GLP-1 enhance vascular repair during cardiometabolic-based chronic disease?. Rev Endocr Metab Disord 22, 1171–1188 (2021). https://doi.org/10.1007/s11154-021-09669-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09669-7

Keywords

Navigation