Skip to main content
Log in

Dynamics and kinetics of complex reaction systems. Contributions of the Professor emeritus Ljiljana Kolar-Anić

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A brief review of Professor Ljiljana Kolar-Anić’s research on the dynamics and kinetics of complex reaction systems is given, with a special emphasis on contributions in the research of the oscillatory processes of Bray, Belousov and Hypothalamic–pituitary–adrenal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Ljiljana completed her high school graduating work in mathematics.

  2. Professor Đorđe Mušicki, University of Belgrade, Faculty of Physics.

  3. Professor Božidar Milić, University of Belgrade, Faculty of Physics.

  4. Namely, Ljiljana has participated in numerous other investigations of complex mechanisms, but she often refused to be the author on corresponding papers with the explanation that it is her duty as professor and researcher to help others without special privileges.

  5. An insight into the nature and scope of the research is completed by the titles of the references below.

  6. The relation between the analogs and the corresponding rate constants was established assuming that the global hydrogen peroxide decay rate can be viewed as it changes monotonically in time, although it is known that it goes through cascades during the oscillatory period.

  7. Time series or the experimental recording of the oscillator.

References

  1. Frenk GM (ed) (1966) Kolebatel’nye protsessy v biologicheskikh i khimicheskikh sistemakh. Nauka, Moskva

    Google Scholar 

  2. Prigogine I (1967) Thermodynamics of irreversible processes. Gradjevinska knjiga, Beograd

    Google Scholar 

  3. Glansdorff P, Prigogine I (1971) Thermodynamics theory of structure, stability and fluctuations. Wiley, New-York

    Google Scholar 

  4. Zhabotinskiy AM (1974) Konsolidatsiya avtokolebaniy. Nauka, Moskva

    Google Scholar 

  5. Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New-York

    Google Scholar 

  6. Nicolis G, Dewel G, Turner JW (1978) Order and fluctuations in equilibrium and nonequilibrium statistical mechanics. Wiley, New York

    Google Scholar 

  7. Prigogine I, Stengers I (1980) From being to becoming. Freeman, New York

    Google Scholar 

  8. Field RJ, Burger M (eds) (1985) Oscillation and traveling waves in chemical systems. Wiley, New York

    Google Scholar 

  9. Nicolis G, Prigogine I (1989) Exploring complexity. Freeman, New York

    Google Scholar 

  10. Gray P, Scott SK (1990) Chemical oscillations and instabilities. Clarendon Press, Oxford

    Google Scholar 

  11. Gray P, Nicolis G, Borckmans P, Scott SK (eds) (1990) Spatial inhomogeneities and transient behavior in chemical kinetics. Manchester University Press, Manchester

    Google Scholar 

  12. Scott SK (1991) Chemical chaos. Clarendon Press, Oxford

    Google Scholar 

  13. Drazin PG (1994) Nonlinear systems. Cambridge University Press, Cambridge

    Google Scholar 

  14. Hilborn RC (1994) Chaos and nonlinear dynamics. Oxford University Press, Oxford

    Google Scholar 

  15. Nicolis G (1995) Introductions to nonlinear science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics: oscillations, waves, patterns, and chaos. Oxford University Press, Oxford

    Google Scholar 

  17. Strizhak PE (2002) Determinovaniy khaos v khimiï. Akademikperiodika, Kiïv (in Ukrainian)

    Google Scholar 

  18. Ross J, Schreiber I, Vlad MO (2014) Determination of complex reaction mechanisms. Oxford University Press, Oxford

    Google Scholar 

  19. Prigogine I (1977) Time, structure a fluctuations (Nobel Lecture). In: Frängsmyr T, Forsén S (eds) Nobel lectures, chemistry 1971–1980. pp 263–285

  20. Ertl G (2008) Reaction at surfaces: from atom to complexity (Nobel Lecture). Angew Chem Int Ed 47:3524–3535

    Article  CAS  Google Scholar 

  21. Kolar Lj (1970) Adsorption characteristics of the modified surfaces of alumina. B.Sc. Thesis. Faculty of Physical Chemistry-University of Belgrade, Belgrade (Yugoslavia, Serbia) (in Serbocroat)

  22. Kolar-Anić Lj (1974) Mathematical analysis of the kinetics of the complex chemical reactions. M.Sc. Thesis, Faculty of Physical Chemistry-University of Belgrade, Belgrade, (Yugoslavia, Serbia) (in Serbocroat)

  23. Kolar-Anić Lj, Veljković S, Kapor S, Dubljević B (1975) Weibull distribution and kinetics of heterogeneous processes. J Chem Phys 63:663–668

    Article  Google Scholar 

  24. Kolar-Anić Lj, Veljković S (1975) Statistical foundations of heterogeneous kinetics. J Chem Phys 63:669–673

    Article  Google Scholar 

  25. Kolar-Anić Lj, Milić B (1979) Thermodynamic properties of a nonideal gas in homogeneous gravitational field. Physica A 98:325–336

    Article  Google Scholar 

  26. Kolar-Anić Lj, Balescu R (1980) On the steady-state solutions of the kinetics of homogeneous nucleation. Chem Phys 46:281–286

    Article  Google Scholar 

  27. Kolar-Anić Lj (1980) Time-independent solutions of the kinetics o homogeneous nucleation. Chem Phys Lett 74:525–530

    Article  Google Scholar 

  28. Kolar-Anić Lj (1982) New solutions for the kinetic model of homogeneous nucleation. J Serb Chem Soc 47:595–600

    Google Scholar 

  29. Kolar-Anić Lj (1983) About the nucleation process. J Serb Chem Soc 48:195–206 (in Serbocroat)

    Google Scholar 

  30. Kolar-Anić Lj (1983) New solutions for the kinetic model of homogeneous nucleation. II. Approximate calculations. J Serb Chem Soc 48:501–506

    Google Scholar 

  31. Kolar-Anić Lj, Cvjetićanin N, Nicolis G (1985) The stochastic approach to monolayer adsorption. Fluctuations in the Adsorbed Amount. J Serb Chem Soc 50:483–491

    Google Scholar 

  32. Kolar-Anić Lj (1989) Stochastic analysis of the process of desorption from the energetically heterogenous surface. In: Graovac A (ed) Studies in the physical and theoretical chemistry. Elsevier, Amsterdam, pp 379–386

    Google Scholar 

  33. Jakšić OM, Čupić ŽD, Jakšić ZS, Ranđelović DV, Kolar-Anić Lj Z (2013) Monolayer gas adsorption in plasmonic sensors: comparative analysis of kinetic models. Russ J Phys Chem A 87:2134–2139

    Article  CAS  Google Scholar 

  34. Jakšić OM, Ranđelović DV, Jakšić ZS, Čupić ŽD, Kolar-Anić LjZ (2014) Plasmonic sensors in multi-analyte environment: rate constants and transient analysis. Chem Eng Res Des 92(1):91–101

    Article  CAS  Google Scholar 

  35. Jakšić OM, Jakšić Z, Čupić ŽD, Ranđelović DV, Kolar-Anić LjZ (2014) Fluctuations in transient response of adsorption-based plasmonic sensors. Sens Actuators B 190:419–428

    Article  CAS  Google Scholar 

  36. Jakšić O, Jokić I, Jakšić Z, Čupić Ž, Kolar-Anić Lj (2014) Adsorption-induced fluctuations and noise in plasmonic metamaterial devices. Phys Scr T 162:014047

    Article  CAS  Google Scholar 

  37. Veljkovic S (1981) Heterogeneity and rate modifications of the Bray-Libehafsky reaction. Bull Soc Chim Beograd 46:711–714

    CAS  Google Scholar 

  38. Noyes RM (1990) Mechanisms of chemical oscillators. J Phys Chem 94:4404–4412

    Article  CAS  Google Scholar 

  39. Triendl L, Noyes RM (1993) A new explanation of the oscillations in the Bray-Liebhafsky reaction. J Phys Chem 97:11354–11362

    Article  Google Scholar 

  40. Schmitz G (2016) Historical overview of oscillating reaction. Contribution of Professor Slobodan Anić. Reac Kinet Mech Catal 118:5–13

    Article  CAS  Google Scholar 

  41. Anić S, Mitić D, Kolar-Anić Lj (1985) The Bray-Liebhafsky reaction. I. Controlled development of oscillations. J Serb Chem Soc 50:53–59

    Google Scholar 

  42. Anić S, Mitić D, Veselinović D, Kolar-Anić Lj (1985) The Bray-Liebhafsky Reaction. II. Potentiometric and pH-metric tracing. J Serb Chem Soc 50:529–533

    Google Scholar 

  43. Anić S, Kolar-Anić Lj (1986) Some new details in the kinetic considerations of the oscillatory decomposition of hydrogen peroxide. Ber Bunsenges Phys Chem 90:539–542

    Article  Google Scholar 

  44. Anić S, Kolar-Anić Lj (1986) The oscillatory decomposition of H2O2 monitored by the potentiometric method with Pt and Ag+/S2− indicator electrode. Ber Bunsenges Phys Chem 90:1084–1086

    Article  Google Scholar 

  45. Anić S, Kolar-Anić Lj (1987) The influence of potassium iodate on hydrogen peroxide decomposition in Bray-Liebhafsky reaction. Ber Bunsenges Phys Chem 91:1010–1013

    Article  Google Scholar 

  46. Anić S, Kolar-Anić Lj (1988) Kinetic aspect of the Bray-Liebhafsky oscillatory reaction. J Chem Soc Faraday Trans I 84:3413–3421

    Article  Google Scholar 

  47. Anić S, Stanisavljev D, Krnajski Belovljev G, Kolar-Anić Lj (1989) Examination of the temperature variations on the Bray-Liebhafsky oscillatory reaction. Ber Bunsenges Phys Chem 93:488–491

    Article  Google Scholar 

  48. Anić S, Vukojević V, Radenković M, Kolar-Anić Lj (1989) New approach to the study of the peroxide kinetics of the Briggs-Rauscher oscillatory reaction. J Serb Chem Soc 54:521–526

    Google Scholar 

  49. Anić S, Kolar-Anić L (1989) Potentiometric determination of the catalytic decomposition of hydrogen peroxide in order to set the expression for the reaction rate of low acidity system. Glasnik na hemičarite i tehnolozite na Makedonija 7:299–302 (in Serbocroat)

    Google Scholar 

  50. Dj Mišljenović, Kolar-Anić Lj (1990) First integral method for evaluation of the relations between components of complex reactions systems. Croat Chem Acta 63:693–699

    Google Scholar 

  51. Kolar-Anić Lj, Dj Mišljenović, Stanisavljev D, Anić S (1990) On the applicability of the Schmitz’s model to dilution-reinitiated oscillations in the Bray-Liebhafsky reaction. J Phys Chem 94:8144–8146

    Article  Google Scholar 

  52. Kolar-Anić Lj, Stanisavljev D, Krnajski Belovljev G, Peeters Ph, Anić S (1990) The first maximum of the iodide concentration in the Bray-Liebhafsky reaction. Comput Chem 14:345–347

    Article  Google Scholar 

  53. Anić S, Kolar-Anić Lj, Stanisavljev D, Begović N, Mitić D (1991) Dilution reinitiated oscillations in the Bray-Liebhafsky system. React Kinet Catal Lett 43:155–162

    Article  Google Scholar 

  54. Kolar-Anić Lj, Schmitz G (1992) Mechanism of the Bray-Liebhafsky reaction: effect of the oxidation of iodous acid by hydrogen peroxide. J Chem Soc Faraday Trans 88:2343–2349

    Article  Google Scholar 

  55. Kolar-Anić Lj, Mišljenović Ð, Anić S, Nicolis G (1995) The influence of the reduction of iodate ion by hydrogen peroxide on the model of the Bray-Liebhafsky reaction. React Kinet Catal Lett 54:35–41

    Article  Google Scholar 

  56. Čupić Ž, Anić S, Terlecki-Baričević A, Kolar-Anić Lj (1995) The Bray-Liebhafsky reaction. The influence of some polymers based on poly(4-vinilpiridine). React Kinet Catal Lett 54:43–49

    Article  Google Scholar 

  57. Terlecki-Baričević A, Čupić Ž, Anić S, Kolar-Anić Lj, Mitrovski S, Ivanović S (1995) Polyvinylpyridine supported iron(III) catalyst in hydrogen peroxide decomposition. J Serb Chem Soc 60:969–979

    Google Scholar 

  58. Kolar-Anić Lj, Vukelić N, Dj Mišljenović, Anić S (1995) On the instability domains of some models for Bray-Liebhafsky oscillatory reaction. J Serb Chem Soc 60:1005–1013 (Errata 1187)

    Google Scholar 

  59. Kolar-Anić Lj, Dj Mišljenović, Anić S (1996) Kinetic model for the Bray-Liebhafsky process without reaction IO3 +I+2H+ = HIO + HIO2. React Kinet Catal Lett 57:37–42

    Article  Google Scholar 

  60. Anić S, Kolar-Anić Lj (1996) The Bray-Liebhafsky reaction. VI. Kinetics in iodide oscillations. J Serb Chem Soc 61:887–891

    Google Scholar 

  61. Anić S, Kolar-Anić Lj, Kőrös E (1997) Methods to determine activation energies for the two kinetic states of the oscillatory Bray-Liebhafsky reaction. React Kinet Catal Lett 61:111–116

    Article  Google Scholar 

  62. Kolar-Anić Lj, Čupić Ž, Anić S, Schmitz G (1997) The pseudo-steady states in the model of the Bray-Liebhafsky oscillatory reaction. J Chem Soc, Faraday Trans 93:2147–2152

    Article  Google Scholar 

  63. Radenković M, Schmitz G, Kolar-Anić Lj (1997) Simulation of iodine oxidation by hydrogen peroxide in acid media, on the basis of the Bray-Liebhafsky reaction. J Serb Chem Soc 62:367–369

    Google Scholar 

  64. Kolar-Anić Lj (1997) Physical-chemical changes at the phase boundary. In: Spasić A (ed) Multiphase dispersion systems. ITNMS, Belgrade, pp 178–205 (in Serbian)

    Google Scholar 

  65. Anić S, Stanisavljev D, Čupić Ž, Radenković M, Vukojević V, Kolar-Anić Lj (1998) The selforganization phenomena during catalytic decomposition of hydrogen peroxide. Sci Sinter 30:49–57

    Google Scholar 

  66. Čupić Ž, Kolar-Anić Lj (1999) Contraction of complex models by the stoichiometric network analysis. In: Stojanović BD, Skorokhod VV, Nikolić MV (eds) Advanced science and technology of sintering. Kluwer Academic-Plenum Publishers, New York, pp 75–80

    Chapter  Google Scholar 

  67. Vukojević V, Pejić N, Stanisavljev D, Anić S, Kolar-Anić Lj (1999) Determination of Cl, Br, I, malonic acid and quercetin by perturbation of a nonequilibrium stationary state in the Bray-Liebhafsky reaction. Analyst 124:147–153

    Article  Google Scholar 

  68. Čupić Ž, Kolar-Anić Lj (1999) Contraction of the model for the Bray-Liebhafsky oscillatory reaction by eliminating intermediate I2O. J Chem Phys 110:3951–3954

    Article  Google Scholar 

  69. Vukojević V, Anić S, Kolar-Anić Lj (2000) Investigation of the dynamic behavior of the Bray-Liebhafsky reaction in the CSTR. Determination of bifurcation points. J Phys Chem A 104:10731–10739

    Article  Google Scholar 

  70. Schmitz G, Kolar-Anić Lj, Anić S, Čupić Ž (2000) The illustration of multistability. J Chem Educ 77:1502–1505

    Article  CAS  Google Scholar 

  71. Ćirić J, Anić S, Čupić Ž, Kolar-Anić Lj (2000) The Bray-Liebhafsky oscillatory reaction. Kinetic investigations in reduction and oxidation pathways based on hydrogen peroxide concentration monitoring. Sci Sinter 32:87–196

    Google Scholar 

  72. Blagojević S, Pejić N, Anić S, Kolar-Anić Lj (2000) Belousov-Zhabotinsky oscillatory reaction. Kinetic of malonic acid decomposition. J Serb Chem Soc 65:709–713

    Google Scholar 

  73. Pejić N, Čupić Ž, Anić S, Vukojević V, Kolar-Anić Lj (2001) The oscillatory Bray-Liebhafsky reaction as a matrix for analyzing enzyme and polymeric catalysts for hydrogen peroxide decomposition. Sci Sinter 33:107–115

    Google Scholar 

  74. Anić S, Kolar-Anić Lj, Vukojević V, Stanisavljev D, Radenković M (2001) Bray-Liebhafsky oscilatory reaction. In: Anić S, Marković D (eds) Professor Dragan Veselinović. DFHS i FFH, Belgrade, pp 175–192 (in Serbian)

    Google Scholar 

  75. Vukojević V, Pejić N, Stanisavljev D, Anić S, Kolar-Anić Lj (2001) Micro-quantitative determination of quercetin by perturbation of a non-equilibrium stationary state in the Bray-Liebhafsky reaction system. Pharmazie 56:897–898

    Google Scholar 

  76. Anić S, Kolar-Anić Lj, Čupić Ž, Pejić N, Vukojević V (2001) Oscillating reaction as a model system for the characterization of catalysts. Svet polimera 4:55–65 (in Serbian)

    Google Scholar 

  77. Vukojević V, Anić S, Kolar-Anić Lj (2002) Investigation of the dynamic behavior of the Bray-Liebhafsky reaction in the CSTR. Properties of the system examined by pulsed perturbations with I. Phys Chem Chem Phys 4:1276–1283

    Article  CAS  Google Scholar 

  78. Pejić N, Anić S, Kuntić V, Vukojević V, Kolar-Anić Lj (2003) Kinetic determination of microquantities of rutin by perturbation of the Bray-Liebhafsky oscillatory reaction in an open system. Mikrochim Acta 143:261–267

    Article  CAS  Google Scholar 

  79. Kolar-Anić Lj, Vukojević V, Pejić N, Grozdić T, Anić S (2004) Deterministic chaos in open well stirred Bray-Liebhafsky reaction system. In: Boccaletti S, Gluckman BJ, Kurths J, Pecora LM, Meucci R, Yordanov O (eds) Exsperimental chaos, American Institute of Physics, AIP Conference Proceedings, vol 742. Melville, New York, pp 3–8

    Chapter  Google Scholar 

  80. Begović N, Marković Z, Anić S, Kolar-Anić Lj (2004) Computational investigation of HIO and HIO2 isomers. J Phys Chem A 108:651–657

    Article  CAS  Google Scholar 

  81. Begović N, Marković Z, Anić S, Kolar-Anić Lj (2004) Modelling the formation of biogenic iodine in marine aerosols. Environ Chem Lett 2:65–69

    Article  CAS  Google Scholar 

  82. Kolar-Anić Lj, Anić S, Čupić Ž (2005) Characterization of the catalysts by means of an oscillatory reaction. In: Spasić A, Hsu JP (eds) Finely dispersed particles: micro-, nano-, and atto-engineering. CRC Inc, New York, pp 191–216

    Chapter  Google Scholar 

  83. Pejić N, Sl Blagojević, Anić S, Vukojević V, Kolar-Anić Lj (2005) Microquantitative determination of hesperidin by pulse perturbation of the oscillatory reaction system. Anal Bioanal Chem 381:775–780

    Article  CAS  Google Scholar 

  84. Popović-Bijelić A, Bijelić G, Kolar-Anić Lj, Vukojević V (2005) Numerically simulated pH-induced reactivaton of catalytic activity of horseradish peroxidase. Ann NY Acad Sci 1048:457–460

    Article  CAS  Google Scholar 

  85. Jelić S, Čupić Ž, Kolar-Anić Lj (2005) Mathematical modeling of the hypothalamic-pituitary-adrenal system activity. Math Biosci 197:173–187

    Article  CAS  Google Scholar 

  86. Milošević M, Pejić N, Čupić Ž, Anić S, Kolar-Anić Lj (2005) Examinations of cross-linked polyvinilpyridine in open reactor. Mater Sci Forum 494:369–374

    Article  Google Scholar 

  87. Kolar-Anić Lj, Anić S, Vukojević V (2005) Dynamics of nonlinear processes. From monotonic to oscillatory evolution. University of Belgrade, Belgrade (in Serbian)

    Google Scholar 

  88. Pejić N, Kolar-Anić Lj, Anić S, Stanisavljev D (2006) Determination of paracetamol in pure and pharmaceutical dosage forms by pulse perturbation technique. J Pharm Biomed Anal 41:610–615

    Article  CAS  Google Scholar 

  89. Schmitz G, Kolar-Anić Lj, Anić S, Grozdić T, Vukojević V (2006) Complex and chaotic oscillations in a model for the ctalytic hydrogen peroxide decomposition under open reactor conditions. J Phys Chem A 110:10361–10368

    Article  CAS  Google Scholar 

  90. Potkonjak N, Kolar-Anić Lj, Potkonjak T, Blagojević SN, Anić S (2006) Oscillatory phenomena during anodic copper electrodisolution in trifluoroacetic acid solution. Mater Sci Forum 518:301–306

    Article  CAS  Google Scholar 

  91. Kolar-Anić Lj, Sl Blagojević, Pejić N, Begović N, St Blagojević, Anić S (2006) New evidence of transient complex oscillations in a closed, well-stirred Belousov-Zhabotinsky system. J Serb Chem Soc 71:603–610

    Article  CAS  Google Scholar 

  92. Pejić N, Blagojević S, Anić S, Vukojević V, Mijatović M, Ćirić J, Marković Z, Marković S, Kolar-Anić Lj (2007) Kinetic determination of morphine by means of Bray-Liebhafsky oscillatory reaction system using analyte pulse perturbation technique. Anal Chim Acta 582:367–374

    Article  CAS  Google Scholar 

  93. Pejić N, Sl Blagojević, Vukelić J, Kolar-Anić Lj, Anić S (2007) Analyte pulse perturbation tecnique for the determination of 6-monoacetylmorphine in seized street drug sample. Bull Chem Soc Jpn 80:1942–1948

    Article  CAS  Google Scholar 

  94. Pejić N, Sl Blagojević, Anić S, Kolar-Anić Lj, Anić S (2007) Determination of ascorbic acid in pharmaceutical dosage forms and urine by means of an oscillatory reaction system using the pulse perturbation technique. Anal Bioanal Chem 389:2009–2017

    Article  CAS  Google Scholar 

  95. Anić S, Kostić M, Ninić M, Sl Blagojević, Kolar-Anić Lj (2007) Activation energies as the validity criterion of a model for complex reactions that can be in oscillatory states. Sci Sinter 39:77–83

    Article  CAS  Google Scholar 

  96. Popović-Bijelić A, Bijelić G, Kolar-Anić Lj, Vukojević V (2007) Temperature dependence of oxygen evolution through catalase-like activity of horseradish peroxidase. Russ J Phys Chem 81:1371–1373

    Article  CAS  Google Scholar 

  97. Schmitz G, Kolar-Anić Lj (2007) The state space of a model for the Bray-Liebhafsky oscillating reaction. Russ J Phys Chem 81:380–1387

    Article  CAS  Google Scholar 

  98. Jelić S, Čupić Ž, Kolar-Anić Lj (2008) Modelling of the hypothalamic-pituitary-adrenal system activity based on the stoichiometric analysis. In: Romano E, de Luca S (eds) New research on neurosecretory systems. Nova Science Publishers Inc, New York, pp 225–245

    Google Scholar 

  99. Ivanović A, Čupić ŽD, Janković MM, Kolar-Anić LjZ, Anić SR (2008) The chaotic sequences in the Bray-Liebhafsky reaction in an open reactor. Phys Chem Chem Phys 10:5848–5858

    Article  CAS  Google Scholar 

  100. Blagojević SM, Anić SR, Čupić ŽD, Pejić ND, Kolar-Anić LjZ (2008) Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinski reaction under batch conditions. Phys Chem Chem Phys 10:6658–6664

    Article  CAS  Google Scholar 

  101. Schmitz G, Kolar-Anić Lj, Anić S, Čupić Ž (2008) Stoichometric Network analysis and associated dimensioless kinetic equations. Application to a model of the Bray-Liebhafsky reaction. J Phys Chem A 112:13452–13457

    Article  CAS  Google Scholar 

  102. Pejić N, Maksimović J, Ribić D, Kolar-Anić Lj (2009) Dynamic states of the Bray-Liebhafsky reaction when sulfuric acid is the control parameter. Russ J Phys Chem A 83:1490–1495

    Article  CAS  Google Scholar 

  103. Blagojević SM, Anić SR, Čupić ŽD, Pejić ND, Kolar-Anić LjZ (2009) Temperature influence on the malonic acid decomposition in the Belousov-Zhabotinsky reaction. Russ J Phy Chem A 83:1496–1501

    Article  CAS  Google Scholar 

  104. Jelić S, Čupić Ž, Kolar-Anić Lj, Vukojević V (2009) Predictive modeling of the hypothalamic-pituitary-adrenal (HPA) function Dynamic systems theory approach by stoichiometric network analysis and quenching small amplitude oscillations. Int J Nonlinear Sci Numer Simul 10:1505–1526

    Article  Google Scholar 

  105. Kolar-Anić Lj, Čupić Ž, Schmitz G, Anić S (2010) Improvement of the stoichiometric network analysis for determination of instability conditions of complex nonlinear reaction systems. Chem Eng Sci 65:3718–3728

    Article  CAS  Google Scholar 

  106. Ivanović AZ, Čupić ŽD, Kolar-Anić LjZ, Janković MM, Anić SR (2009) Large deviation spectra of chaotic time series from Bray-Liebhafsky reaction. Russ J Phys Chem A 83:1526–1530

    Article  CAS  Google Scholar 

  107. Ivanović-Šašić A, Marković VM, Anić SR, Kolar-Anić LjZ, Čupić ŽD (2011) Structures of chaos in open reaction systems. Phys Chem Chem Phys 13:20162–20171

    Article  CAS  Google Scholar 

  108. Pejić N, Vujković M, Maksimović J, Ivanović A, Anić S, Čupić Ž, Kolar-Anić Lj (2011) Dynamic behavior of the Bray-Liebhafsky oscillatory reaction controlled by sulfuric acid and temperature. Russ J Phys Chem A 85:2310–2316

    Article  CAS  Google Scholar 

  109. Maksimović J, Kolar-Anić Lj, Anić S, Ribič D, Pejić N (2011) Quantitative determination of some water-soluble B vitamins by kinetic analytical method based on the perturbation of an oscillatory reaction. J Braz Chem Soc 22:38–48

    Google Scholar 

  110. Marković VM, Čupić Ž, Vukojević V, Kolar-Anić Lj (2011) Predictive modeling of the hypothalamic-pituitary-adrenal (HPA) axis response to acute and chronic stress. Endocr J 58:889–904

    Article  Google Scholar 

  111. Marković VM, Čupić Ž, Ivanović A, Kolar-Anić Lj (2011) The Stability of the extended model of hypothalamic-pituitary-adrenal (HPA) axis examined by stoichiometric network analysis (SNA). Russ J Phys Chem A 85:2327–2335

    Article  CAS  Google Scholar 

  112. Kolar-Anić Lj, Čupić Ž, Vukojević V, Anić S (2011) Dynamics of non-linear processes. University of Belgrade, Belgrade (In Serbian)

    Google Scholar 

  113. Pejić ND, Maksimović JP, Blagojević SM, Anić SR, Čupić ŽD, Kolar-Anić LjZ (2012) Kinetic analytical method for determination of uric acid in human urine using analyte pulse perturbation technique. J Braz Chem Soc 23:1450–1459

    Google Scholar 

  114. Pejić N, Anić S, Kolar-Anić L (2012) Analytical applications of oscillatory chemical reactions: determination of some pharmaceuticaly and biologically important compounds. Hemijska industrija 66:153–164 (in Serbian)

    Article  CAS  Google Scholar 

  115. Stanković B, Čupić Ž, Pejić N, Kolar-Anić Lj (2012) Numerical study on Bray-Liebhafsky oscillatory reaction: bifurcations. J Appl Nonlinear Dyn 1:1–6

    Article  Google Scholar 

  116. Maćešić S, Čupić Ž, Kolar-Anić Lj (2012) Model of the nonlinear reaction system with autocatalysis and autoinhibition: stability of dynamic states. Hemijska industrija 66:637–646

    Article  CAS  Google Scholar 

  117. Čupić Ž, Ivanović-Šašić A, Anić S, Stanković B, Maksimović J, Kolar-Anić Lj, Schmitz G (2013) Tourbillion in the phase space of the Bray-Liebhafsky nonlinear oscillatory reaction and related multiple-time-scale model. Commun Math Comput Chem/MATCH 69:805–830

    Google Scholar 

  118. Čupić Ž, Marković V, Ivanović A, Kolar-Anić Lj (2013) Modeling of the complex nonlinear processes: determination of the instability region by the stoichiometric network analysis. In: Brennan Christopher R (ed) Mathematical Modeling. Nova Science Publishers Inc, New York, pp 111–178

    Google Scholar 

  119. Pejić ND, Sarap NB, Maksimović JP, Anić SR, Kolar-Anić LjZ (2013) Pulse perturbation technique for determination of piroxicam in pharmaceuticals using an oscillatory reaction system. Cent Eur J Chem 11:180–188

    Google Scholar 

  120. Blagojević SM, Anić SR, Čupić ŽD, Blagojević SN, Kolar-Anić LjZ (2013) Numerical evidence of complex nonlinear phenomena of the Belousov-Zhabotinsky oscillatory reaction under batch conditions. Russ J Phys Chem A 87:2140–2145

    Article  CAS  Google Scholar 

  121. Lj Kolar-Anić, Čupić Ž (2013) Linear and nonlinear reaction systems. In: Hedrih (Stevanović) K, Mijajlović Ž (eds) Nonlinear dynamics. Serbian Society of Mechanics, Belgrade, pp 67–88

    Google Scholar 

  122. Stanković B, Čupić Ž, Pejić N, Lj Kolar-Anić (2013) Numerical study on Bray-Liebhafsky oscillatory reaction: bifurcations. J Appl Nonlinear Dyn 2(3):285–301

    Article  Google Scholar 

  123. Pejić N, Sl Blagojević, Sarap N, Maksimović J, Anić S, Čupić Ž, Lj Kolar-Anić (2014) Perturbations of the Dushman reaction with piroxicam: experimental and model calculations. Helv Chim Acta 97(1):47–55

    Article  CAS  Google Scholar 

  124. Čupić ŽD, Kolar-Anić LjZ, Anić SR, Maćešić SR, Maksimović JP, Pavlović MS, Milenković MC, Bubanja INM, Greco E, Furrow SD, Cervellati R (2014) Regularity of intermittent bursts in Briggs-Rauscher oscillating systems with phenol. Helv Chim Acta 97(3):321–333

    Article  CAS  Google Scholar 

  125. Bubanja IN, Ivanović-Šašić A, Čupić Ž, Anić S, Kolar-Anić Lj (2014) Bray-Liebhafsky reaction in CSTR: intermittent oscillations and specific flow rate. In: Čupić Ž, Anić S (eds) Physical Chemistry. SPCS, Belgrade, pp 335–338

    Google Scholar 

  126. Maćešić SR, Čupić ŽD, SlM Blagojević, Pejić ND, Anić SR, Kolar-Anić LjZ (2015) Current rates and reaction rates in the stoichiometric network analysis (SNA). Open Chem 13:591–599

    Google Scholar 

  127. Blagojević SN, Čupić Ž, Ivanović-Šašić A, Kolar-Anić Lj (2015) Mixed-mode oscillations and chaos in return maps of an oscillatory chemical reaction. Russ J Phys Chem A 13:2349–2358

    Article  CAS  Google Scholar 

  128. Maćešić S, Čupić Ž, Anić S, Lj Kolar-Anić (2015) Autocatalator as the source of instability in the complex non-linear neuroendocrine model. Int J Non-Linear Mech 73:25–30

    Article  Google Scholar 

  129. Hedrih(Stevanović) K, Ivanović-Šašić A, Simonović J, Kolar-Anić Lj, Čupić Ž (2015) Oscillators: phenomenological mappings and analogies—First Part: mathematical analogy and chains. Sci Tech Rev 65(3):27–38

    Article  Google Scholar 

  130. Hedrih(Stevanović) K, Ivanović-Šašić A, Simonović J, Kolar-Anić Lj, Čupić Ž (2015) Oscillators: phenomenological mappings and analogies—Second Part: structural analogy and chains. Sci Tech Rev 65(4):37–45

    Article  Google Scholar 

  131. Bubanja IN, Maćešić S, Ivanović-Šašić A, Čupić Ž, Anić S, Lj Kolar-Anić (2016) Intermittent chaos in the Bray-Liebhafsky oscillator. Temperature dependence. Phys Chem Chem Phys 18:9770–9778

    Article  CAS  Google Scholar 

  132. Stanković B, Čupić Ž, Maćešić S, Pejić N, Lj Kolar-Anić (2016) Complex bifurcations in the oscillatory reaction model. Chaos Solitons Fractals 87:84–91

    Article  Google Scholar 

  133. Čupić Ž, Marković VM, Maćešić S, Stanojević A, Damjanović S, Vukojević V, Lj Kolar-Anić (2016) Dynamic transitions in a model of the hypothalamic-pituitary-adrenal (HPA) axis. Chaos 26(3):033111

    Article  CAS  Google Scholar 

  134. Marković VM, Čupić Ž, Maćešić S, Stanojević A, Vukojević V, Lj Kolar-Anić (2016) Modelling cholesterol effects on the dynamics of the hypothalamic–pituitary–adrenal (HPA) axis. Math Med Biol 33:1–28

    Article  Google Scholar 

  135. Čupić Ž, Ivanović-Šašić A, St Blagojević, Sl Blagojević, Lj Kolar-Anić, Anić S (2016) Return map analysis of the highly nonlinear Bray-Liebhafsky reaction model. Reac Kinet Mech Catal 118(1):27–38

    Article  CAS  Google Scholar 

  136. Maćešić S, Čupić Ž, Lj Kolar-Anić (2016) Bifurcation analysis of the reduced model of Bray-Liebhafsky reaction. Reac Kinet Mech Cat 118(1):39–55 Erratum 57–57

    Article  CAS  Google Scholar 

  137. Pejić N, Lj Kolar-Anić, Maksimović J, Janković M, Vukojević V, Anić S (2016) Dynamic transitions in the Bray-Liebhafsky oscillating reaction. Effect of hydrogen peroxide and temperature on bifurcation. Reac Kinet Mech Cat 118(1):15–26

    Article  CAS  Google Scholar 

  138. Čupić Ž, Schmitz G, Lj Kolar-Anić (2016) Stoichiometric network analysis as mathematical method for examinations of instability region and oscillatory dynamics. Appl Math Inform Mech 8(1):43–64

    Google Scholar 

  139. Kolar-Anić Lj, Anić S, Čupić Ž, Ivanović-Šašić A, Pejić N, Blagojević Sl, Vukojević V (2017). In: Zerong Wang (ed) Uta Wille, Eusebio Juaristi (eds) Chapter 23 oscillating reactions in encyclopedia of physical organic chemistry, 6 Volume Set, Volume 2, Part 2 organic Rractions and mechanisms. Wiley, New York. pp 1127–1222

  140. Čupić Ž, Stanojević A, Marković VM, Kolar-Anić Lj, Terenius L, Vukojević V The HPA axis and ethanol—a synthesis of mathematical modeling and experimental observations. Addiction Biology. doi:10.1111/adb.12409 (in press)

  141. Anić S, Mitić D, Ćurćija M (1987) The Bray-Liebhafsky reaction. III. Oscillatory decomposition of H2O2 in the presence of comparatively high acidity. J Serb Chem Soc 52:575–579

    Google Scholar 

  142. Anić S, Mitić D (1988) The Bray-Liebhafsky reaction. IV. New results in the studies of hydrogen peroxide oscillatory decomposition at high acidity. J Serb Chem Soc 53:371–376

    Google Scholar 

  143. Anić S, Mitić D (1989) Sensitivity of the Bray-Liebhafsky reaction to the presence of chloride ions. Glasnik na hemičarite i tehnolozite na Makedonija 7:303–306 (in Serbocroat)

    Google Scholar 

  144. Anić S, Veselinović D, Vukojević V, Radenković M (1994) Electrochemical source of alternating current based on an oscillating reaction. J Serb Chem Soc 59:457–461

    Google Scholar 

  145. Anić S, Stanisavljev D (1995) Bray-Liebhafsky reaction. V. New kinetic data on low-acidity reaction system J Serb Chem Soc 61:125–127

    Google Scholar 

  146. Stanisavljev D, Mišljenović Dj,  Anić S, Vukojević V (1996) The application of a continuation technique in examination oh the model oh the Bray-Liebhafsky reaction mechanism. In: Ribnikar S, Anić S (eds) Physical chemistry 96, SPCS, Belgrade, pp 141–142

  147. Čupić Ž, Anić S, Mišljenović Đ (1996) The Bray-Liebhafsky reaction. VII. Concentrations of the external species H+ and IO3 . J Serb Chem Soc 61:893–902

    Google Scholar 

  148. Anić S (1997) Relation between the number of oscillations and the activation energy of an oscillatory process. J Serb Chem Soc 62:65–69

    Google Scholar 

  149. Stanisavljev D (1997) Consideration of the thermodynamic stabillity of iodine species in the Bray-Liebhafsky reaction. Ber Bunsenges Phys Chem 101:1036–1039

    Article  CAS  Google Scholar 

  150. Anić S, Ćirić J, Daničić T, Grozdić T (1998) Investigation of the low-temperature Bray-Liebhafsky reaction kinetics on the basis of parameters specific to oscillatory reactions. Nauka-Tehnika-Bezbednost/NTB 2:21-27 (in Serbian)

  151. Stanisavljev D, Begović N, Vukojević V (1998) Influence of heavy water on the Bray-Lebhafsky oscillating reacion. J Phys Chem 102:6887–6891

    Article  CAS  Google Scholar 

  152. Stanisavljev D, Begović N, Žujović Z, Vučelić D, Bačić G (1988) H NMR monitoring of water behavior during the Bray-Liebhafsky oscillatory reaction. J Phys Chem 102:6883–6886

    Article  Google Scholar 

  153. Stanisavljev DR, Vukojević V (2002) Investigation of the influence of heavy water on the kinetic pathways in the Bray-Liebhafsky reaction. J Phys Chem A 106:5618–5625

    Article  CAS  Google Scholar 

  154. Čupić Ž, Anić S (2004) Stoichiometric approach to the modeling of the terrorism. In: Anić S, Čupić Ž, Lj Kolar-Anić (eds) Selforganization in Nonequlibrium Systems. SPCS, Belgrade, pp 85–88

    Google Scholar 

  155. Begović N, Marković Z (2004) Activation energies of hydrogen peroxide decomposition in the presence of oxyiodine species. In: Anić S, Čupić Ž, Lj Kolar-Anić (eds) Selforganization in Nonequlibrium Systems. SPCS, Belgrade, pp 215–218

    Google Scholar 

  156. Stanisavljev DR, Đorđević AR, Likar-Smiljanić VD (2004) Microwave driven Bray-Liebhafsky oscillatory reaction. Chem Phys Chem 5:140–144

    Article  CAS  Google Scholar 

  157. Stanisavljev D, Đorđević A, Likar-Smiljanić V (2005) Investigation of microwave effects on the oscillatory Bray-Liebhafsky y reaction. Chem Phys Lett 412:420–424

    Article  CAS  Google Scholar 

  158. Stanisavljev DR, Đorđević AR, Likar-Smiljanić VD (2006) Microwaves and coherence in the Bray-Liebhafsky oscillatory reaction. Chem Phys Lett 423:59–62

    Article  CAS  Google Scholar 

  159. Stanisavljev DR, Dramićanin MD (2007) Excessive excitation of hydrogen peroxide during oscillatory chemical evolution. J Phys Chem A 111:7703–7706

    Article  CAS  Google Scholar 

  160. Anić S, Maksimović J, Lončarević D, Pejić N, Čupić Ž (2009) Activity of polimer supported cobalt catalyst in the Bray-Liebhafsky oscillator. Russ J Phys Chem A 9:1468–1472

    Article  CAS  Google Scholar 

  161. Pejić ND (2009) Analytical applications of pulse perturbation method of Bray-Liebhafsky oscillatory reaction realized in the open reactor. Hemijska industrija 63(5a):455–466 (in Serbian)

    Google Scholar 

  162. Stanisavljev DR (2010) Energy dynamics in the Bray-Liebhafsky oscillatory reaction. J Phys Chem A 114:725–729

    Article  CAS  Google Scholar 

  163. Blagojević SM, Anić SR, Čupić ŽD (2011) Influence of most important radicals on the numericaly simulated Belousov-Zhabotinsky oscillatory reaction under batch conditions. Russ J Phys Chem A 85:2274–2278

    Article  CAS  Google Scholar 

  164. Begović N, Marković Z, Anić S (2011) Kinetics of thermal reaction HOCl⇄H(2 S) + OCl(X 2Π i) in gas phase. Russ J Phys Chem A 85(13):2283–2287

    Article  CAS  Google Scholar 

  165. Maksimović JP, Čupić ŽD, Lončarević D, Pejić N, Vasiljević-Radović D, Anić S (2011) Kinetics of the Bray-Liebhafsky oscillatory reaction perturbed by polymer supported cobalt catalyst. Sci Sinter 43:55–62

    Article  CAS  Google Scholar 

  166. Stanisavljev DR, Milenković MC, Mojović MD, Popović-Bijelić AD (2011) A potential source of free radicals in iodine based chemical oscillators. J Phys Chem 115:2247–2249

    Article  CAS  Google Scholar 

  167. Stanisavljev DR, Milenković MC, Mojović MD, Popović-Bijelić AD (2011) Oxygen centered radicals in iodine chemical oscillators. J Phys Chem A 115:7955–7958

    Article  CAS  Google Scholar 

  168. Milenković MC, Stanisavljev DR (2012) Role of free radicals in modeling the iodide peroxide reaction mechanism. J Phys Chem A 116:5541–5548

    Article  CAS  Google Scholar 

  169. Stanković B, Anić S (2013) Short review on the models of Bray-Liebhafsky oscillatory reaction. In: Hedrih (Stevanović) KR (ed) Scientific Review, Special Issue Nonlinear Dynamics, Serbian Scientific Society, Belgrade, pp 89–112

  170. Potkonjak NI, Nikolić Z, Anić SR, Minić DM (2014) Electrochemical oscillations during copper electrodissolution/passivation in trifluoroacetic acid induced by current interrupt method. Corros Sci 83:355–358. https://doi.org/10.1016/j.corsci.2014.02.034

    Article  CAS  Google Scholar 

  171. Stanisavljev DR, Ljubić IŽ, Milenković MC (2014) Influence of chemically inert cations on the hydrogen-bond network in the Bray-Liebhafsky oscillatory reaction. Aust J Chem 67:944–948

    Article  CAS  Google Scholar 

  172. Stanisavljev DR, Velikić Z, Veselinović DS, Jacić NV, Milenković MC (2014) Bray-Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field. Chem Phys 441:1–4

    Article  CAS  Google Scholar 

  173. Stevanovic KZ, Bubanja INM, Stanisavljev DR (2017) Domination of thermodynamically demanding oxidative processes in reaction of iodine with hydrogen peroxide. Chem Phys Lett 684:257–261

    Article  CAS  Google Scholar 

  174. Stanisavljev D, Vukojević V (1995) Thermochemical effects accompanying oscillations in the Bray-Liebhafsky reaction. J Serb Chem Soc 60:1125–1134

    CAS  Google Scholar 

  175. Milenković MC, Stanisavljev DR (2011) The kinetics of iodide oxidation by hydrogen peroxide in acid solution. Russ J Phys Chem A 85:35–38

    Article  CAS  Google Scholar 

  176. Stanisavljev D, Bubanja INM, Stevanovic K (2016) Determination of iodate ion in the presence of hydrogen peroxide with the stopped-flow technique. Reac Kinet Mech Cat 118:143–151

    Article  CAS  Google Scholar 

  177. Čupić Ž, Greco E, Cervellati R (2015) New experimental and mechanistic investigation on the KSCN-H2O2-NaOH-Cu(II)-catalyzed oscillating system (Orbàn-Epstein Reaction). Inhibitory effects by diphenols. Int J Chem Kinet 47:82–92

    Article  CAS  Google Scholar 

  178. Bray WC (1921) A periodic reaction in homogeneous solution and its relation to catalysis. J Am Chem Soc 43:1262–1267

    Article  CAS  Google Scholar 

  179. Kőrös E (1974) Monomolecular treatment of chemical oscillation. Nature 251:703–704

    Article  Google Scholar 

  180. Belousov BP (1958) A periodic reaction and its mechanism. Zbornik referatov po radiatsionni medetsine. Medgiz, Mosscow, p 145 (in Russian)

    Google Scholar 

  181. Zhabotinskii AM (1964) Periodic processes of the oxidation of malonic acid in solution (study of the kinetics of Belousov’s reaction). Biofizika 9:306–311  (in Russian)

    CAS  Google Scholar 

  182. Briggs TS, Rauscher WC (1973) An oscillating iodine clock. J Chem Educ 50:496

    Article  CAS  Google Scholar 

  183. Tichonova LP, Zakrevskaya LN, Yatsimirrskii KB (1978) Catalytic method of ruthenium determination based on oscillating chemical reaction. J Anal Chem SSSR 33:1991–1998 (in Russian)

    Google Scholar 

  184. Jimenez-Prieto R, Silva M, Perez-Bendito D (1998) Approaching the use of oscillating reactions for analytical monitoring. Analyst 123:1R–8R

    Article  CAS  Google Scholar 

  185. Gao J (2005) Application of oscillating chemical reaction to analytical chemistry: recent developments. Pakistan J Biol Sci 8:512

    Article  CAS  Google Scholar 

  186. Jimenez-Prieto R, Silva M, Perez-Bendito D (1995) Analite pulse perturbation technique: a tool for analytical determinations in far-from-equilibrium dynamic systems. Anal Chem 67:729–734

    Article  CAS  Google Scholar 

  187. Jimenez-Prieto R, Silva M, Perez-Bendito D (1996) Determination of gallic acid by an oscillating chemical reaction using the analyt pulse perturbation technique. Anal Chem Acta 321:53–60

    Article  CAS  Google Scholar 

  188. Sorensen PG, Hynne F, Nelsen K (1990) Quenching of chemical oscillations: general theory. React Kinet Catal Lett 42:309–315

    Article  CAS  Google Scholar 

  189. Vukojević V, Sorensen PG, Hynne F (1993) Predictive value of a model of the Biggs-Rasher reaction fitted to quenching experiments. J Phys Chem 97:4091–4100

    Article  Google Scholar 

  190. Schmitz G (1983) Stationarite et reactions periodique (Ph.D. thesis). Universite Libre de Bruxelles, Bruxelles (in French)

  191. Schmitz G (1987) Cinetique de la reaction de Bray. J Chim Phys 84:957–965 (in French)

    Article  CAS  Google Scholar 

  192. Odutola JA, Bohlander CA, Noyes RM (1982) Chemical oscillations and instabilities. 46. Iodide ion measurements on the oscillatory iodate-peroxide system. J Phys Chem 86:818–824

    Article  CAS  Google Scholar 

  193. Clarke BL (1980) Stability of complex reaction networks. In: Prigogine I, Rice SA (eds) Advances in chemical physics. Wiley, New York, pp 1–216

    Google Scholar 

  194. Clarke BL (1988) Stoichiometric network analysis. Cell Biophys 12:237–253

    Article  CAS  Google Scholar 

  195. Schreiber I, Ross J (2003) Mechanisms of oscillatory reactions deduced from bifurcation diagrams. J Phys Chem 107:9846–9859

    Article  CAS  Google Scholar 

  196. Hynne F, Graae Sørensen P, Møller T (1993) Current and eigenvector analyses of chemical reaction networks at Hopf bifurcations. J Chem Phys 98:211–219

    Article  CAS  Google Scholar 

  197. Gatermann K, Eiswirth M, Sensse A (2005) Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J Symb Comput 40:1361–1382

    Article  Google Scholar 

  198. Domijan M, Kirkilionis M (2009) Bistability and oscillations in chemical reaction networks. J Math Biol 59:467–501

    Article  Google Scholar 

  199. Urbanczik R, Wagner C (2005) An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics 21:1203–1210

    Article  CAS  Google Scholar 

  200. Abulseoud OA, Ho MC, Choi D-S, Stanojević A, Čupić Ž, Lj Kolar-Anić, Vukojević V (2017) Corticosterone oscillations during mania induction in the lateral hypothalamic kindled rat—experimental observations and mathematical modeling. PLoS ONE 12(5):e0177551

    Article  CAS  Google Scholar 

  201. Bubanja IN, Ivanović-Šašić A, Čupić Ž, Anić S, Lj Kolar-Anić (2017) Intermittent chaos in the Bray-Liebhafsky oscillator. Dependence of dynamic states on the iodate concentration. Russ J Phys Chem A. https://doi.org/10.1134/S0036024417130076

    Google Scholar 

  202. Schmitz G (2010) Iodine oxidation by hydrogen peroxide in acidic solutions, Bray-Liebhafsky reaction and other related reactions. Phys Chem Chem Phys 12:6605–6615

    Article  CAS  Google Scholar 

  203. Schmitz G (2011) Iodine oxidation by hydrogen peroxide and Bray-Liebhafsky oscillating reaction: effect of the temperature. Phys Chem Chem Phys 13:7102–7111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slobodan R. Anić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anić, S.R., Čupić, Ž.D. Dynamics and kinetics of complex reaction systems. Contributions of the Professor emeritus Ljiljana Kolar-Anić. Reac Kinet Mech Cat 123, 1–15 (2018). https://doi.org/10.1007/s11144-017-1290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1290-z

Keywords

Navigation